Move Keras related parallel ops test to keras/integration
PiperOrigin-RevId: 306709806 Change-Id: I9e59adba1ec7c0192c17ab74f8fa9759f2d4ee58
This commit is contained in:
parent
97e4f0d394
commit
8c849c6550
@ -60,3 +60,13 @@ tf_py_test(
|
||||
"//tensorflow/python:extra_py_tests_deps",
|
||||
],
|
||||
)
|
||||
|
||||
tf_py_test(
|
||||
name = "vectorized_map_test",
|
||||
srcs = ["vectorized_map_test.py"],
|
||||
python_version = "PY3",
|
||||
deps = [
|
||||
"//tensorflow:tensorflow_py",
|
||||
"//tensorflow/python:extra_py_tests_deps",
|
||||
],
|
||||
)
|
||||
|
@ -0,0 +1,47 @@
|
||||
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
class VectorizedMapTest(tf.test.TestCase):
|
||||
|
||||
def test_vectorized_map(self):
|
||||
batch_size = 10
|
||||
num_features = 32
|
||||
layer = tf.keras.layers.Dense(1)
|
||||
|
||||
def model_fn(arg):
|
||||
with tf.GradientTape() as g:
|
||||
inp, label = arg
|
||||
inp = tf.expand_dims(inp, 0)
|
||||
label = tf.expand_dims(label, 0)
|
||||
prediction = layer(inp)
|
||||
loss = tf.nn.l2_loss(label - prediction)
|
||||
return g.gradient(loss, (layer.kernel, layer.bias))
|
||||
|
||||
inputs = tf.random.uniform([batch_size, num_features])
|
||||
labels = tf.random.uniform([batch_size, 1])
|
||||
per_example_gradients = tf.vectorized_map(model_fn, (inputs, labels))
|
||||
self.assertEqual(per_example_gradients[0].shape,
|
||||
(batch_size, num_features, 1))
|
||||
self.assertEqual(per_example_gradients[1].shape, (batch_size, 1))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
tf.test.main()
|
@ -37,7 +37,6 @@ from tensorflow.python.framework import indexed_slices
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.framework import sparse_tensor
|
||||
from tensorflow.python.framework import test_util
|
||||
from tensorflow.python.keras.layers import core as keras_core
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import bitwise_ops
|
||||
from tensorflow.python.ops import cond_v2
|
||||
@ -140,28 +139,6 @@ class PForTest(PForTestCase):
|
||||
c = pfor_control_flow_ops.vectorized_map(outer_product, a)
|
||||
self.assertAllEqual((batch_size, 32, 32, 32, 32), c.shape)
|
||||
|
||||
def test_vectorized_map_example_2(self):
|
||||
batch_size = 10
|
||||
num_features = 32
|
||||
layer = keras_core.Dense(1)
|
||||
|
||||
def model_fn(arg):
|
||||
with backprop.GradientTape() as g:
|
||||
inp, label = arg
|
||||
inp = array_ops.expand_dims(inp, 0)
|
||||
label = array_ops.expand_dims(label, 0)
|
||||
prediction = layer(inp)
|
||||
loss = nn.l2_loss(label - prediction)
|
||||
return g.gradient(loss, (layer.kernel, layer.bias))
|
||||
|
||||
inputs = random_ops.random_uniform([batch_size, num_features])
|
||||
labels = random_ops.random_uniform([batch_size, 1])
|
||||
per_example_gradients = pfor_control_flow_ops.vectorized_map(
|
||||
model_fn, (inputs, labels))
|
||||
self.assertAllEqual(per_example_gradients[0].shape,
|
||||
(batch_size, num_features, 1))
|
||||
self.assertAllEqual(per_example_gradients[1].shape, (batch_size, 1))
|
||||
|
||||
def test_disable_tf_function(self):
|
||||
def_function.run_functions_eagerly(True)
|
||||
# vectorized_map should ignore disabling tf.functions
|
||||
|
Loading…
Reference in New Issue
Block a user