Add ShardedVariable class.

PiperOrigin-RevId: 272745815
This commit is contained in:
Thomas O'Malley 2019-10-03 14:45:29 -07:00 committed by TensorFlower Gardener
parent 84f9d53683
commit 89e33e5ef3
4 changed files with 319 additions and 2 deletions

View File

@ -1,6 +1,5 @@
load("//tensorflow:tensorflow.bzl", "py_test", "tf_py_test")
load("//tensorflow:tensorflow.bzl", "cuda_py_test")
load("//tensorflow/compiler/tests:build_defs.bzl", "tf_xla_py_test")
load("//tensorflow/core/platform:default/distribute.bzl", "distribute_py_test")
package(
@ -132,6 +131,7 @@ py_library(
":distribute_lib",
":mirrored_strategy",
":one_device_strategy",
":sharded_variable",
"//tensorflow/python/distribute/experimental",
],
)
@ -778,6 +778,32 @@ cuda_py_test(
grpc_enabled = True,
)
py_library(
name = "sharded_variable",
srcs = ["sharded_variable.py"],
srcs_version = "PY2AND3",
deps = [
"//tensorflow/python:tensor_shape",
"//tensorflow/python:variables",
"//tensorflow/python/training/saving:saveable_object_util",
"//tensorflow/python/training/tracking:base",
],
)
tf_py_test(
name = "sharded_variable_test",
size = "small",
srcs = ["sharded_variable_test.py"],
additional_deps = [
":sharded_variable",
"//tensorflow/python:array_ops",
"//tensorflow/python:client_testlib",
"//tensorflow/python:variables",
"//tensorflow/python/compat:v2_compat",
"//tensorflow/python/training/tracking:util",
],
)
py_library(
name = "strategy_test_lib",
srcs = ["strategy_test_lib.py"],

View File

@ -0,0 +1,139 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ShardedVariable class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import variables as variables_lib
from tensorflow.python.training.saving import saveable_object_util
from tensorflow.python.training.tracking import base as trackable
class ShardedVariable(trackable.Trackable):
"""A container for `Variables` that should be treated as shards.
Variables that are too large to fit on a single device (e.g., large
embeddings)
may need to be sharded over multiple devices. This class maintains a list of
smaller variables that can be independently stored on separate devices (eg,
multiple parameter servers), and saves and restores those variables as if they
were a single larger variable.
Objects of this class can be saved with a given number of shards and then
restored from a checkpoint into a different number of shards.
Sharding is only supported along the first dimension.
"""
def __init__(self, variables, name='ShardedVariable'):
"""Treats `variables` as shards of a larger Variable.
Example:
```
variables = [
tf.Variable(..., shape=(10, 100), dtype=tf.float32),
tf.Variable(..., shape=(15, 100), dtype=tf.float32),
tf.Variable(..., shape=(5, 100), dtype=tf.float32)
]
sharded_variable = ShardedVariable(variables)
assert sharded_variable.shape.as_list() == [30, 100]
```
Args:
variables: A list of `ResourceVariable`s that comprise this sharded
variable. Variables should not be shared between different
`ShardedVariable` objects.
name: String. Name of this container. Defaults to "ShardedVariable".
"""
super(ShardedVariable, self).__init__()
self._variables = variables
self._name = name
first_var = variables[0]
if any(not isinstance(v, variables_lib.Variable) for v in variables):
raise ValueError(
'Expected a list of `Variable`s, found: {}'.format(variables))
dtypes = {v.dtype for v in variables}
if len(dtypes) > 1:
raise ValueError(
'All `Variable`s must have the same dtype, found: {}'.format(
[v.dtype for v in variables]))
self._dtype = first_var.dtype
# All variables must have the same shape for axes > 0.
higher_dim_shapes = {tuple(v.shape.as_list()[1:]) for v in variables}
if len(higher_dim_shapes) > 1:
raise ValueError(
'All `Variables`s must have the same shapes except for the first '
'axis, found {}'.format([v.shape for v in variables]))
first_dim = sum(int(v.shape[0]) for v in variables)
self._shape = tensor_shape.TensorShape([first_dim] + first_var.shape[1:])
save_slice_info = [v._get_save_slice_info() for v in variables] # pylint: disable=protected-access
if any(slice_info is not None for slice_info in save_slice_info):
raise ValueError('`SaveSliceInfo` should not be set for `Variable`s. '
'`ShardedVariable` will infer `SaveSliceInfo` according '
'to the order of the `Variable`s in the list passed to '
'the constructor. Found {}'.format(save_slice_info))
@property
def variables(self):
"""The list of `Variable`s that make up the shards of this object."""
return self._variables
@property
def name(self):
"""The name of this object. Used for checkpointing."""
return self._name
@property
def dtype(self):
"""The dtype of all `Variable`s in this object."""
return self._dtype
@property
def shape(self):
"""The overall shape, combining all shards along axis `0`."""
return self._shape
def _gather_saveables_for_checkpoint(self):
"""Return a `Saveable` for each shard. See `Trackable`."""
def _saveable_factory(name=self.name):
"""Creates `SaveableObject`s for this `ShardedVariable`."""
saveables = []
dims = len(self._variables[0].shape)
var_offset = [0 for _ in range(dims)]
for v in self._variables:
save_slice_info = variables_lib.Variable.SaveSliceInfo(
full_name=self.name,
full_shape=self.shape.as_list(),
var_offset=copy.copy(var_offset),
var_shape=v.shape.as_list())
saveables.append(
saveable_object_util.ResourceVariableSaveable(
v, save_slice_info.spec, name)) # pylint: disable=protected-access
var_offset[0] += int(v.shape[0])
return saveables
return {trackable.VARIABLE_VALUE_KEY: _saveable_factory}

View File

@ -0,0 +1,146 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for ShardedVariable."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from tensorflow.python.compat import v2_compat
from tensorflow.python.distribute import sharded_variable
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import variables as variables_lib
from tensorflow.python.platform import test
from tensorflow.python.training.tracking import util
class ShardedVariableTest(test.TestCase):
def test_sharded_variable_simple(self):
v0 = variables_lib.Variable([0])
v1 = variables_lib.Variable([1])
s = sharded_variable.ShardedVariable([v0, v1], name='s')
self.assertEqual(s.variables[0], v0)
self.assertEqual(s.variables[1], v1)
self.assertEqual(s.shape.as_list(), [2])
self.assertEqual(s.dtype, v0.dtype)
self.assertEqual(s.name, 's')
def test_save_restore(self):
fname = os.path.join(self.get_temp_dir(), 'checkpoint')
variables = [
variables_lib.Variable([0]),
variables_lib.Variable([1]),
variables_lib.Variable([2]),
variables_lib.Variable([3])
]
s = sharded_variable.ShardedVariable(variables, name='s')
cp = util.Checkpoint(s=s)
self.assertEqual(self.evaluate(cp.s.variables[0]), [0])
cp.write(fname)
self.evaluate(cp.s.variables[0].assign([4]))
self.assertEqual(self.evaluate(cp.s.variables[0]), [4])
cp.restore(fname)
# Tests that the original weights are restored.
self.assertEqual(self.evaluate(cp.s.variables[0]), [0])
def test_save_restore_different_partitions(self):
fname = os.path.join(self.get_temp_dir(), 'checkpoint')
variables = [
variables_lib.Variable([0]),
variables_lib.Variable([1]),
variables_lib.Variable([2]),
variables_lib.Variable([3])
]
s = sharded_variable.ShardedVariable(variables, name='s')
cp = util.Checkpoint(s=s)
cp.write(fname)
variables2 = [variables_lib.Variable([0, 0, 0, 0])]
s2 = sharded_variable.ShardedVariable(variables2, name='s')
# Restore from 4 partitions into 1.
cp2 = util.Checkpoint(s=s2)
cp2.restore(fname)
self.assertAllEqual(self.evaluate(cp2.s.variables[0]), [0, 1, 2, 3])
self.evaluate(cp2.s.variables[0].assign([5, 10, 15, 20]))
cp2.write(fname)
# Restore 1 partition into 4.
cp.restore(fname)
self.assertEqual(self.evaluate(cp.s.variables[0]), [5])
self.assertEqual(self.evaluate(cp.s.variables[1]), [10])
self.assertEqual(self.evaluate(cp.s.variables[2]), [15])
self.assertEqual(self.evaluate(cp.s.variables[3]), [20])
def test_save_restore_4_to_2_partitions(self):
fname = os.path.join(self.get_temp_dir(), 'checkpoint')
variables = [
variables_lib.Variable([0]),
variables_lib.Variable([1]),
variables_lib.Variable([2]),
variables_lib.Variable([3])
]
s = sharded_variable.ShardedVariable(variables, name='s')
cp = util.Checkpoint(s=s)
cp.write(fname)
variables2 = [
variables_lib.Variable([0, 0]),
variables_lib.Variable([0, 0])
]
s2 = sharded_variable.ShardedVariable(variables2, name='s')
cp2 = util.Checkpoint(s=s2)
cp2.restore(fname)
# Assert that weights from the 4 partitions were loaded here.
self.assertLen(cp2.s.variables, 2)
self.assertAllEqual(self.evaluate(cp2.s.variables[0]), [0, 1])
self.assertAllEqual(self.evaluate(cp2.s.variables[1]), [2, 3])
def test_validation_errors(self):
with self.assertRaisesRegexp(ValueError, 'Expected a list of '):
sharded_variable.ShardedVariable(
[variables_lib.Variable([0]), 'not-a-variable'])
with self.assertRaisesRegexp(ValueError, 'must have the same dtype'):
sharded_variable.ShardedVariable([
variables_lib.Variable([0], dtype='int64'),
variables_lib.Variable([1], dtype='int32')
])
with self.assertRaisesRegexp(ValueError, 'the same shapes except'):
sharded_variable.ShardedVariable([
variables_lib.Variable(array_ops.ones((5, 10))),
variables_lib.Variable(array_ops.ones((5, 20)))
])
with self.assertRaisesRegexp(ValueError, '`SaveSliceInfo` should not'):
v = variables_lib.Variable([0])
v._set_save_slice_info(
variables_lib.Variable.SaveSliceInfo(
full_name='s', full_shape=[2], var_offset=[0], var_shape=[1]))
sharded_variable.ShardedVariable([v])
if __name__ == '__main__':
v2_compat.enable_v2_behavior()
test.main()

View File

@ -28,6 +28,7 @@ from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variables
from tensorflow.python.training.saving import saveable_object
from tensorflow.python.training.tracking import base as trackable
from tensorflow.python.util import nest
from tensorflow.python.util import object_identity
@ -147,6 +148,9 @@ def saveable_objects_for_op(op, name):
slice_name = None
# pylint: disable=protected-access
for variable in op:
if isinstance(variable, saveable_object.SaveableObject):
yield variable
continue
if not isinstance(variable, variables.Variable):
raise ValueError("Slices must all be Variables: %s" % variable)
if not variable._save_slice_info:
@ -210,7 +214,7 @@ def op_list_to_dict(op_list, convert_variable_to_tensor=True):
"""Create a dictionary of names to operation lists.
Args:
op_list: A list, tuple, or set of Variables or SaveableObjects.
op_list: A (nested) list, tuple, or set of Variables or SaveableObjects.
convert_variable_to_tensor: Whether or not to convert single Variables
with no slice info into Tensors.
@ -226,6 +230,8 @@ def op_list_to_dict(op_list, convert_variable_to_tensor=True):
if not isinstance(op_list, (list, tuple, set)):
raise TypeError("Variables to save should be passed in a dict or a "
"list: %s" % op_list)
# List casting is necessary to support sets.
op_list = nest.flatten(list(op_list))
# When ResourceVariables are converted to Tensors, read ops are added to the
# graph. Sorting the op_list ensures that the resulting graph is always
# constructed in a deterministic way: