diff --git a/tensorflow/python/keras/layers/preprocessing/image_preprocessing_distribution_test.py b/tensorflow/python/keras/layers/preprocessing/image_preprocessing_distribution_test.py index 0b93c1d57c6..7fc2b42c919 100644 --- a/tensorflow/python/keras/layers/preprocessing/image_preprocessing_distribution_test.py +++ b/tensorflow/python/keras/layers/preprocessing/image_preprocessing_distribution_test.py @@ -40,9 +40,10 @@ class ImagePreprocessingDistributionTest( preprocessing_test_utils.PreprocessingLayerTest): def test_distribution(self, distribution): - np_images = np.random.random((1000, 32, 32, 3)).astype(np.float32) + # TODO(b/159738418): large image input causes OOM in ubuntu multi gpu. + np_images = np.random.random((32, 32, 32, 3)).astype(np.float32) image_dataset = dataset_ops.Dataset.from_tensor_slices(np_images).batch( - 32, drop_remainder=True) + 16, drop_remainder=True) with distribution.scope(): input_data = keras.Input(shape=(32, 32, 3), dtype=dtypes.float32) @@ -58,7 +59,7 @@ class ImagePreprocessingDistributionTest( output = flatten_layer(preprocessed_image) cls_layer = keras.layers.Dense(units=1, activation="sigmoid") output = cls_layer(output) - model = keras.Model(inputs=input_data, outputs=preprocessed_image) + model = keras.Model(inputs=input_data, outputs=output) model.compile(loss="binary_crossentropy") _ = model.predict(image_dataset)