Add missing declarations for explicit instantiations in concat_lib and split_lib, and add new headers concat_lib_gpu.h and split_lib_gpu.h to contain them (and the declaration of the primary templates).
The current behaviour (using externally defined instantiations without having seen a declaration of those external instantiations) is undesirable and effectively deprecated, and is warned about by -Wundefined-func-template. PiperOrigin-RevId: 237158146
This commit is contained in:
parent
58e052bd77
commit
87cd62e4d1
@ -230,6 +230,7 @@ tf_kernel_library(
|
||||
gpu_srcs = [
|
||||
"concat_lib_gpu_impl.cu.cc",
|
||||
"concat_lib.h",
|
||||
"concat_lib_gpu.h",
|
||||
"cuda_device_array.h",
|
||||
"cuda_device_array_gpu.h",
|
||||
],
|
||||
@ -607,6 +608,7 @@ tf_kernel_library(
|
||||
gpu_srcs = [
|
||||
"split_lib_gpu.cu.cc",
|
||||
"split_lib.h",
|
||||
"split_lib_gpu.h",
|
||||
],
|
||||
deps = [
|
||||
":cuda_device_array",
|
||||
@ -618,9 +620,7 @@ tf_kernel_library(
|
||||
|
||||
cc_library(
|
||||
name = "split_lib_hdrs",
|
||||
hdrs = [
|
||||
"split_lib.h",
|
||||
],
|
||||
hdrs = ["split_lib.h"],
|
||||
deps = [
|
||||
"//tensorflow/core:framework_lite",
|
||||
"//third_party/eigen3",
|
||||
|
@ -54,6 +54,24 @@ void ConcatGPU(
|
||||
inputs_flat,
|
||||
Tensor* output, typename TTypes<T, 2>::Tensor* output_flat);
|
||||
|
||||
// Explicit instantiations in concat_lib_gpu.cc.
|
||||
#define REGISTER(T) \
|
||||
extern template void ConcatGPU<T>( \
|
||||
OpKernelContext * c, \
|
||||
const std::vector<std::unique_ptr<typename TTypes<T, 2>::ConstMatrix>>& \
|
||||
inputs_flat, \
|
||||
Tensor* output, typename TTypes<T, 2>::Tensor* output_flat);
|
||||
|
||||
TF_CALL_GPU_NUMBER_TYPES(REGISTER);
|
||||
TF_CALL_complex64(REGISTER);
|
||||
TF_CALL_complex128(REGISTER);
|
||||
TF_CALL_int32(REGISTER); // Needed for TensorLists.
|
||||
TF_CALL_int64(REGISTER);
|
||||
TF_CALL_int16(REGISTER);
|
||||
TF_CALL_bfloat16(REGISTER);
|
||||
TF_CALL_bool(REGISTER);
|
||||
TF_CALL_uint8(REGISTER);
|
||||
#undef REGISTER
|
||||
#endif // GOOGLE_CUDA
|
||||
|
||||
#ifdef TENSORFLOW_USE_SYCL
|
||||
|
@ -26,24 +26,10 @@ limitations under the License.
|
||||
|
||||
#if GOOGLE_CUDA
|
||||
|
||||
#include "tensorflow/core/kernels/concat_lib_gpu.h"
|
||||
#include "tensorflow/core/kernels/cuda_device_array.h"
|
||||
|
||||
namespace tensorflow {
|
||||
|
||||
template <typename T, typename IntType>
|
||||
void ConcatGPUSlice(
|
||||
const Eigen::GpuDevice& gpu_device,
|
||||
const std::vector<std::unique_ptr<typename TTypes<T, 2>::ConstMatrix>>&
|
||||
inputs_flat,
|
||||
typename TTypes<T, 2>::Matrix* output);
|
||||
|
||||
template <typename T, typename IntType>
|
||||
void ConcatGPUImpl(const Eigen::GpuDevice& d,
|
||||
const CudaDeviceArrayStruct<const T*>& input_ptrs,
|
||||
const CudaDeviceArrayStruct<IntType>& ptr_offsets,
|
||||
bool same_size, int slice_size,
|
||||
typename TTypes<T, 2>::Matrix* output);
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename T, typename IntType>
|
||||
|
82
tensorflow/core/kernels/concat_lib_gpu.h
Normal file
82
tensorflow/core/kernels/concat_lib_gpu.h
Normal file
@ -0,0 +1,82 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_CORE_KERNELS_CONCAT_LIB_GPU_H_
|
||||
#define TENSORFLOW_CORE_KERNELS_CONCAT_LIB_GPU_H_
|
||||
|
||||
#define EIGEN_USE_THREADS
|
||||
#define EIGEN_USE_GPU
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
#include "tensorflow/core/framework/register_types.h"
|
||||
#include "tensorflow/core/kernels/concat_lib.h"
|
||||
#include "tensorflow/core/kernels/cuda_device_array_gpu.h"
|
||||
|
||||
namespace tensorflow {
|
||||
|
||||
template <typename T, typename IntType>
|
||||
void ConcatGPUSlice(
|
||||
const Eigen::GpuDevice& gpu_device,
|
||||
const std::vector<std::unique_ptr<typename TTypes<T, 2>::ConstMatrix>>&
|
||||
inputs_flat,
|
||||
typename TTypes<T, 2>::Matrix* output);
|
||||
|
||||
template <typename T, typename IntType>
|
||||
void ConcatGPUImpl(const Eigen::GpuDevice& d,
|
||||
const CudaDeviceArrayStruct<const T*>& input_ptrs,
|
||||
const CudaDeviceArrayStruct<IntType>& ptr_offsets,
|
||||
bool same_size, int slice_size,
|
||||
typename TTypes<T, 2>::Matrix* output);
|
||||
|
||||
// Explicit instantiations in concat_lib_gpu_impl.cu.cc.
|
||||
#define REGISTER(T) \
|
||||
extern template void ConcatGPUSlice<T, int32>( \
|
||||
const Eigen::GpuDevice& gpu_device, \
|
||||
const std::vector<std::unique_ptr<typename TTypes<T, 2>::ConstMatrix>>& \
|
||||
inputs_flat, \
|
||||
typename TTypes<T, 2>::Matrix* output); \
|
||||
extern template void ConcatGPUSlice<T, int64>( \
|
||||
const Eigen::GpuDevice& gpu_device, \
|
||||
const std::vector<std::unique_ptr<typename TTypes<T, 2>::ConstMatrix>>& \
|
||||
inputs_flat, \
|
||||
typename TTypes<T, 2>::Matrix* output); \
|
||||
extern template void ConcatGPUImpl<T, int32>( \
|
||||
const Eigen::GpuDevice& d, \
|
||||
const CudaDeviceArrayStruct<const T*>& input_ptrs, \
|
||||
const CudaDeviceArrayStruct<int32>& ptr_offsets, bool fixed_size, \
|
||||
int split_size, typename TTypes<T, 2>::Matrix* output); \
|
||||
extern template void ConcatGPUImpl<T, int64>( \
|
||||
const Eigen::GpuDevice& d, \
|
||||
const CudaDeviceArrayStruct<const T*>& input_ptrs, \
|
||||
const CudaDeviceArrayStruct<int64>& ptr_offsets, bool fixed_size, \
|
||||
int split_size, typename TTypes<T, 2>::Matrix* output);
|
||||
|
||||
TF_CALL_GPU_NUMBER_TYPES(REGISTER);
|
||||
TF_CALL_complex64(REGISTER);
|
||||
TF_CALL_complex128(REGISTER);
|
||||
TF_CALL_int32(REGISTER); // Needed for TensorLists.
|
||||
TF_CALL_int64(REGISTER);
|
||||
TF_CALL_int16(REGISTER);
|
||||
TF_CALL_bfloat16(REGISTER);
|
||||
TF_CALL_bool(REGISTER);
|
||||
TF_CALL_uint8(REGISTER);
|
||||
#undef REGISTER
|
||||
|
||||
} // namespace tensorflow
|
||||
|
||||
#endif // TENSORFLOW_CORE_KERNELS_CONCAT_LIB_GPU_H_
|
@ -23,6 +23,7 @@ limitations under the License.
|
||||
#include "tensorflow/core/framework/bfloat16.h"
|
||||
#include "tensorflow/core/framework/register_types.h"
|
||||
#include "tensorflow/core/framework/tensor_types.h"
|
||||
#include "tensorflow/core/kernels/concat_lib_gpu.h"
|
||||
#include "tensorflow/core/kernels/cuda_device_array_gpu.h"
|
||||
#include "tensorflow/core/util/cuda_kernel_helper.h"
|
||||
|
||||
|
@ -24,6 +24,7 @@ limitations under the License.
|
||||
#include "tensorflow/core/framework/register_types.h"
|
||||
#include "tensorflow/core/framework/tensor_types.h"
|
||||
#include "tensorflow/core/kernels/cuda_device_array_gpu.h"
|
||||
#include "tensorflow/core/kernels/split_lib_gpu.h"
|
||||
#include "tensorflow/core/util/cuda_kernel_helper.h"
|
||||
|
||||
namespace tensorflow {
|
||||
@ -192,54 +193,52 @@ __global__ void SplitVOpKernel_fixed(
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
struct SplitOpGPULaunch {
|
||||
void Run(const Eigen::GpuDevice& d, const T* input, int32 prefix_dim_size,
|
||||
int32 split_dim_size, int32 suffix_dim_size,
|
||||
const CudaDeviceArrayStruct<T*>& output_ptr_data) {
|
||||
CudaLaunchConfig config = GetCudaLaunchConfig(
|
||||
prefix_dim_size * split_dim_size * suffix_dim_size, d);
|
||||
void SplitOpGPULaunch<T>::Run(
|
||||
const Eigen::GpuDevice& d, const T* input, int32 prefix_dim_size,
|
||||
int32 split_dim_size, int32 suffix_dim_size,
|
||||
const CudaDeviceArrayStruct<T*>& output_ptr_data) {
|
||||
CudaLaunchConfig config = GetCudaLaunchConfig(
|
||||
prefix_dim_size * split_dim_size * suffix_dim_size, d);
|
||||
|
||||
TF_CHECK_OK(CudaLaunchKernel(SplitOpKernel<T>, config.block_count,
|
||||
config.thread_per_block, 0, d.stream(), input,
|
||||
prefix_dim_size, split_dim_size,
|
||||
suffix_dim_size, output_ptr_data));
|
||||
}
|
||||
};
|
||||
TF_CHECK_OK(CudaLaunchKernel(SplitOpKernel<T>, config.block_count,
|
||||
config.thread_per_block, 0, d.stream(), input,
|
||||
prefix_dim_size, split_dim_size, suffix_dim_size,
|
||||
output_ptr_data));
|
||||
}
|
||||
|
||||
template <typename T, typename IntType>
|
||||
struct SplitVOpGPULaunch {
|
||||
void Run(const Eigen::GpuDevice& gpu_device, bool fixed_size,
|
||||
const T* input_ptr, int total_rows, int total_cols,
|
||||
const CudaDeviceArrayStruct<IntType>& output_scan,
|
||||
const CudaDeviceArrayStruct<T*>& output_ptr_data) {
|
||||
if (fixed_size) {
|
||||
CudaLaunchConfig config =
|
||||
GetCudaLaunchConfig(total_rows * total_cols, gpu_device);
|
||||
void SplitVOpGPULaunch<T, IntType>::Run(
|
||||
const Eigen::GpuDevice& gpu_device, bool fixed_size, const T* input_ptr,
|
||||
int total_rows, int total_cols,
|
||||
const CudaDeviceArrayStruct<IntType>& output_scan,
|
||||
const CudaDeviceArrayStruct<T*>& output_ptr_data) {
|
||||
if (fixed_size) {
|
||||
CudaLaunchConfig config =
|
||||
GetCudaLaunchConfig(total_rows * total_cols, gpu_device);
|
||||
|
||||
SplitVOpKernel_fixed<T><<<config.block_count, config.thread_per_block, 0,
|
||||
gpu_device.stream()>>>(
|
||||
input_ptr, total_rows, total_cols, output_ptr_data);
|
||||
} else {
|
||||
auto config = GetCuda2DLaunchConfig(total_cols, total_rows, gpu_device);
|
||||
IntType smem_max = gpu_device.sharedMemPerBlock();
|
||||
IntType smem_usage = output_scan.size * sizeof(IntType);
|
||||
// performance crossover is less than using maximum available shared
|
||||
// memory on most processors possibly due to decreasing occupancy
|
||||
// 4096 inputs is a lot, most code will take the smem path
|
||||
const int32 kMaxSmemBytesPerformance = 16384;
|
||||
if (smem_usage < smem_max && smem_usage < kMaxSmemBytesPerformance)
|
||||
split_v_kernel<T, IntType, true>
|
||||
<<<config.block_count, config.thread_per_block, smem_usage,
|
||||
gpu_device.stream()>>>(input_ptr, output_scan, total_rows,
|
||||
total_cols, output_ptr_data);
|
||||
else
|
||||
split_v_kernel<T, IntType, false>
|
||||
<<<config.block_count, config.thread_per_block, 0,
|
||||
gpu_device.stream()>>>(input_ptr, output_scan, total_rows,
|
||||
total_cols, output_ptr_data);
|
||||
}
|
||||
SplitVOpKernel_fixed<T><<<config.block_count, config.thread_per_block, 0,
|
||||
gpu_device.stream()>>>(
|
||||
input_ptr, total_rows, total_cols, output_ptr_data);
|
||||
} else {
|
||||
auto config = GetCuda2DLaunchConfig(total_cols, total_rows, gpu_device);
|
||||
IntType smem_max = gpu_device.sharedMemPerBlock();
|
||||
IntType smem_usage = output_scan.size * sizeof(IntType);
|
||||
// performance crossover is less than using maximum available shared
|
||||
// memory on most processors possibly due to decreasing occupancy
|
||||
// 4096 inputs is a lot, most code will take the smem path
|
||||
const int32 kMaxSmemBytesPerformance = 16384;
|
||||
if (smem_usage < smem_max && smem_usage < kMaxSmemBytesPerformance)
|
||||
split_v_kernel<T, IntType, true>
|
||||
<<<config.block_count, config.thread_per_block, smem_usage,
|
||||
gpu_device.stream()>>>(input_ptr, output_scan, total_rows,
|
||||
total_cols, output_ptr_data);
|
||||
else
|
||||
split_v_kernel<T, IntType, false>
|
||||
<<<config.block_count, config.thread_per_block, 0,
|
||||
gpu_device.stream()>>>(input_ptr, output_scan, total_rows,
|
||||
total_cols, output_ptr_data);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#define REGISTER_GPU_KERNEL(T) template struct SplitOpGPULaunch<T>;
|
||||
|
||||
|
61
tensorflow/core/kernels/split_lib_gpu.h
Normal file
61
tensorflow/core/kernels/split_lib_gpu.h
Normal file
@ -0,0 +1,61 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_CORE_KERNELS_SPLIT_LIB_GPU_H_
|
||||
#define TENSORFLOW_CORE_KERNELS_SPLIT_LIB_GPU_H_
|
||||
|
||||
#define EIGEN_USE_THREADS
|
||||
#define EIGEN_USE_GPU
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
#include "tensorflow/core/framework/register_types.h"
|
||||
#include "tensorflow/core/kernels/cuda_device_array_gpu.h"
|
||||
#include "tensorflow/core/kernels/split_lib.h"
|
||||
|
||||
namespace tensorflow {
|
||||
|
||||
template <typename T>
|
||||
struct SplitOpGPULaunch {
|
||||
void Run(const Eigen::GpuDevice& d, const T* input, int32 prefix_dim_size,
|
||||
int32 split_dim_size, int32 suffix_dim_size,
|
||||
const CudaDeviceArrayStruct<T*>& output_ptr_data);
|
||||
};
|
||||
|
||||
template <typename T, typename IntType>
|
||||
struct SplitVOpGPULaunch {
|
||||
void Run(const Eigen::GpuDevice& d, bool fixed, const T* input,
|
||||
int total_cols, int total_rows,
|
||||
const CudaDeviceArrayStruct<IntType>& output_scan,
|
||||
const CudaDeviceArrayStruct<T*>& output_ptr_data);
|
||||
};
|
||||
|
||||
// Explicit instantiations in split_lib_gpu.cu.cc.
|
||||
#define REGISTER_GPU_KERNEL(T) \
|
||||
extern template struct SplitOpGPULaunch<T>; \
|
||||
extern template struct SplitVOpGPULaunch<T, int32>; \
|
||||
extern template struct SplitVOpGPULaunch<T, int64>;
|
||||
|
||||
TF_CALL_GPU_NUMBER_TYPES(REGISTER_GPU_KERNEL);
|
||||
TF_CALL_complex64(REGISTER_GPU_KERNEL);
|
||||
TF_CALL_complex128(REGISTER_GPU_KERNEL);
|
||||
TF_CALL_bfloat16(REGISTER_GPU_KERNEL);
|
||||
#undef REGISTER_GPU_KERNEL
|
||||
|
||||
} // namespace tensorflow
|
||||
|
||||
#endif // TENSORFLOW_CORE_KERNELS_SPLIT_LIB_GPU_H_
|
@ -30,6 +30,7 @@ limitations under the License.
|
||||
#if GOOGLE_CUDA
|
||||
#include "tensorflow/core/common_runtime/gpu/gpu_event_mgr.h"
|
||||
#include "tensorflow/core/kernels/cuda_device_array.h"
|
||||
#include "tensorflow/core/kernels/split_lib_gpu.h"
|
||||
#include "tensorflow/core/platform/stream_executor.h"
|
||||
#endif // GOOGLE_CUDA
|
||||
|
||||
@ -267,13 +268,6 @@ class SplitOpCPU : public SplitOpBase<CPUDevice, T> {
|
||||
|
||||
#if GOOGLE_CUDA
|
||||
|
||||
template <typename T>
|
||||
struct SplitOpGPULaunch {
|
||||
void Run(const Eigen::GpuDevice& d, const T* input, int32 prefix_dim_size,
|
||||
int32 split_dim_size, int32 suffix_dim_size,
|
||||
const CudaDeviceArrayStruct<T*>& output_ptr_data);
|
||||
};
|
||||
|
||||
// Partial specialization for GPU
|
||||
template <typename T>
|
||||
class SplitOpGPU : public SplitOpBase<GPUDevice, T> {
|
||||
|
@ -36,6 +36,7 @@ limitations under the License.
|
||||
#if GOOGLE_CUDA
|
||||
#include "tensorflow/core/common_runtime/gpu/gpu_event_mgr.h"
|
||||
#include "tensorflow/core/kernels/cuda_device_array.h"
|
||||
#include "tensorflow/core/kernels/split_lib_gpu.h"
|
||||
#include "tensorflow/core/platform/stream_executor.h"
|
||||
#endif // GOOGLE_CUDA
|
||||
|
||||
@ -329,14 +330,6 @@ class SplitVOpCPU : public SplitVOpBase<CPUDevice, T, Tlen> {
|
||||
|
||||
#if GOOGLE_CUDA
|
||||
|
||||
template <typename T, typename IntType>
|
||||
struct SplitVOpGPULaunch {
|
||||
void Run(const Eigen::GpuDevice& d, bool fixed, const T* input,
|
||||
int total_cols, int total_rows,
|
||||
const CudaDeviceArrayStruct<IntType>& output_scan,
|
||||
const CudaDeviceArrayStruct<T*>& output_ptr_data);
|
||||
};
|
||||
|
||||
// Partial specialization for GPU
|
||||
template <typename T, typename Tlen>
|
||||
class SplitVOpGPU : public SplitVOpBase<GPUDevice, T, Tlen> {
|
||||
|
Loading…
x
Reference in New Issue
Block a user