Merge pull request #40274 from mansnils:detection_postprocess

PiperOrigin-RevId: 333329643
Change-Id: I2c30b99dcc738970ff37c6fa08832d7cd93980e8
This commit is contained in:
TensorFlower Gardener 2020-09-23 11:12:08 -07:00
commit 87b784f413
11 changed files with 1409 additions and 19 deletions

View File

@ -36,6 +36,7 @@ cc_library(
"comparisons.cc",
"concatenation.cc",
"dequantize.cc",
"detection_postprocess.cc",
"elementwise.cc",
"ethosu.cc",
"floor.cc",
@ -115,6 +116,7 @@ cc_library(
"//tensorflow/lite/kernels/internal:types",
"//tensorflow/lite/micro:memory_helpers",
"//tensorflow/lite/micro:micro_utils",
"@flatbuffers",
] + select({
"//conditions:default": [],
":xtensa_hifimini": [
@ -166,6 +168,20 @@ tflite_micro_cc_test(
],
)
tflite_micro_cc_test(
name = "detection_postprocess_test",
srcs = [
"detection_postprocess_test.cc",
],
deps = [
":kernel_runner",
":micro_ops",
"//tensorflow/lite/c:common",
"//tensorflow/lite/micro/testing:micro_test",
"@flatbuffers",
],
)
tflite_micro_cc_test(
name = "fully_connected_test",
srcs = [

View File

@ -0,0 +1,868 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <numeric>
#define FLATBUFFERS_LOCALE_INDEPENDENT 0
#include "flatbuffers/flexbuffers.h" // from @flatbuffers
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/micro_utils.h"
namespace tflite {
namespace ops {
namespace micro {
namespace detection_postprocess {
/**
* This version of detection_postprocess is specific to TFLite Micro. It
* contains the following differences between the TFLite version:
*
* 1.) Temporaries (temporary tensors) - Micro use instead scratch buffer API.
* 2.) Output dimensions - the TFLite version determines output size
* and resizes the output tensor. Micro runtime does not support tensor
* resizing. However if output dimensions are undefined TFLu memory API is
* used to allocate the new dimensions.
*/
// Input tensors
constexpr int kInputTensorBoxEncodings = 0;
constexpr int kInputTensorClassPredictions = 1;
constexpr int kInputTensorAnchors = 2;
// Output tensors
constexpr int kOutputTensorDetectionBoxes = 0;
constexpr int kOutputTensorDetectionClasses = 1;
constexpr int kOutputTensorDetectionScores = 2;
constexpr int kOutputTensorNumDetections = 3;
constexpr int kNumCoordBox = 4;
constexpr int kBatchSize = 1;
constexpr int kNumDetectionsPerClass = 100;
// Object Detection model produces axis-aligned boxes in two formats:
// BoxCorner represents the lower left corner (xmin, ymin) and
// the upper right corner (xmax, ymax).
// CenterSize represents the center (xcenter, ycenter), height and width.
// BoxCornerEncoding and CenterSizeEncoding are related as follows:
// ycenter = y / y_scale * anchor.h + anchor.y;
// xcenter = x / x_scale * anchor.w + anchor.x;
// half_h = 0.5*exp(h/ h_scale)) * anchor.h;
// half_w = 0.5*exp(w / w_scale)) * anchor.w;
// ymin = ycenter - half_h
// ymax = ycenter + half_h
// xmin = xcenter - half_w
// xmax = xcenter + half_w
struct BoxCornerEncoding {
float ymin;
float xmin;
float ymax;
float xmax;
};
struct CenterSizeEncoding {
float y;
float x;
float h;
float w;
};
// We make sure that the memory allocations are contiguous with static assert.
static_assert(sizeof(BoxCornerEncoding) == sizeof(float) * kNumCoordBox,
"Size of BoxCornerEncoding is 4 float values");
static_assert(sizeof(CenterSizeEncoding) == sizeof(float) * kNumCoordBox,
"Size of CenterSizeEncoding is 4 float values");
struct OpData {
int max_detections;
int max_classes_per_detection; // Fast Non-Max-Suppression
int detections_per_class; // Regular Non-Max-Suppression
float non_max_suppression_score_threshold;
float intersection_over_union_threshold;
int num_classes;
bool use_regular_non_max_suppression;
CenterSizeEncoding scale_values;
// Scratch buffers indexes
int active_candidate_idx;
int decoded_boxes_idx;
int scores_idx;
int score_buffer_idx;
int keep_scores_idx;
int scores_after_regular_non_max_suppression_idx;
int sorted_values_idx;
int keep_indices_idx;
int sorted_indices_idx;
int buffer_idx;
int selected_idx;
// Cached tensor scale and zero point values for quantized operations
TfLiteQuantizationParams input_box_encodings;
TfLiteQuantizationParams input_class_predictions;
TfLiteQuantizationParams input_anchors;
};
TfLiteStatus AllocateOutDimensions(TfLiteContext* context,
TfLiteIntArray** dims, int x, int y = 0,
int z = 0) {
int size = 1;
size = size * x;
size = (y > 0) ? size * y : size;
size = (z > 0) ? size * z : size;
*dims = reinterpret_cast<TfLiteIntArray*>(context->AllocatePersistentBuffer(
context, TfLiteIntArrayGetSizeInBytes(size)));
(*dims)->size = size;
(*dims)->data[0] = x;
if (y > 0) {
(*dims)->data[1] = y;
}
if (z > 0) {
(*dims)->data[2] = z;
}
return kTfLiteOk;
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
OpData* op_data = nullptr;
const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer);
const flexbuffers::Map& m = flexbuffers::GetRoot(buffer_t, length).AsMap();
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
op_data = reinterpret_cast<OpData*>(
context->AllocatePersistentBuffer(context, sizeof(OpData)));
op_data->max_detections = m["max_detections"].AsInt32();
op_data->max_classes_per_detection = m["max_classes_per_detection"].AsInt32();
if (m["detections_per_class"].IsNull())
op_data->detections_per_class = kNumDetectionsPerClass;
else
op_data->detections_per_class = m["detections_per_class"].AsInt32();
if (m["use_regular_nms"].IsNull())
op_data->use_regular_non_max_suppression = false;
else
op_data->use_regular_non_max_suppression = m["use_regular_nms"].AsBool();
op_data->non_max_suppression_score_threshold =
m["nms_score_threshold"].AsFloat();
op_data->intersection_over_union_threshold = m["nms_iou_threshold"].AsFloat();
op_data->num_classes = m["num_classes"].AsInt32();
op_data->scale_values.y = m["y_scale"].AsFloat();
op_data->scale_values.x = m["x_scale"].AsFloat();
op_data->scale_values.h = m["h_scale"].AsFloat();
op_data->scale_values.w = m["w_scale"].AsFloat();
return op_data;
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
auto* op_data = static_cast<OpData*>(node->user_data);
// Inputs: box_encodings, scores, anchors
TF_LITE_ENSURE_EQ(context, NumInputs(node), 3);
const TfLiteTensor* input_box_encodings =
GetInput(context, node, kInputTensorBoxEncodings);
const TfLiteTensor* input_class_predictions =
GetInput(context, node, kInputTensorClassPredictions);
const TfLiteTensor* input_anchors =
GetInput(context, node, kInputTensorAnchors);
TF_LITE_ENSURE_EQ(context, NumDimensions(input_box_encodings), 3);
TF_LITE_ENSURE_EQ(context, NumDimensions(input_class_predictions), 3);
TF_LITE_ENSURE_EQ(context, NumDimensions(input_anchors), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 4);
const int num_boxes = input_box_encodings->dims->data[1];
const int num_classes = op_data->num_classes;
op_data->input_box_encodings.scale = input_box_encodings->params.scale;
op_data->input_box_encodings.zero_point =
input_box_encodings->params.zero_point;
op_data->input_class_predictions.scale =
input_class_predictions->params.scale;
op_data->input_class_predictions.zero_point =
input_class_predictions->params.zero_point;
op_data->input_anchors.scale = input_anchors->params.scale;
op_data->input_anchors.zero_point = input_anchors->params.zero_point;
// Scratch tensors
context->RequestScratchBufferInArena(context, num_boxes,
&op_data->active_candidate_idx);
context->RequestScratchBufferInArena(context,
num_boxes * kNumCoordBox * sizeof(float),
&op_data->decoded_boxes_idx);
context->RequestScratchBufferInArena(
context,
input_class_predictions->dims->data[1] *
input_class_predictions->dims->data[2] * sizeof(float),
&op_data->scores_idx);
// Additional buffers
context->RequestScratchBufferInArena(context, num_boxes * sizeof(float),
&op_data->scores_idx);
context->RequestScratchBufferInArena(context, num_boxes * sizeof(float),
&op_data->keep_scores_idx);
context->RequestScratchBufferInArena(
context, op_data->max_detections * num_boxes * sizeof(float),
&op_data->scores_after_regular_non_max_suppression_idx);
context->RequestScratchBufferInArena(
context, op_data->max_detections * num_boxes * sizeof(float),
&op_data->sorted_values_idx);
context->RequestScratchBufferInArena(context, num_boxes * sizeof(int),
&op_data->keep_indices_idx);
context->RequestScratchBufferInArena(
context, op_data->max_detections * num_boxes * sizeof(int),
&op_data->sorted_indices_idx);
int buffer_size = std::max(num_classes, op_data->max_detections);
context->RequestScratchBufferInArena(
context, buffer_size * num_boxes * sizeof(int), &op_data->buffer_idx);
buffer_size = std::min(num_boxes, op_data->max_detections);
context->RequestScratchBufferInArena(
context, buffer_size * num_boxes * sizeof(int), &op_data->selected_idx);
// number of detected boxes
const int num_detected_boxes =
op_data->max_detections * op_data->max_classes_per_detection;
// Outputs: detection_boxes, detection_scores, detection_classes,
// num_detections
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 4);
// Output Tensor detection_boxes: size is set to (1, num_detected_boxes, 4)
TfLiteTensor* detection_boxes =
GetOutput(context, node, kOutputTensorDetectionBoxes);
if (detection_boxes->dims->size == 0) {
TF_LITE_ENSURE_STATUS(AllocateOutDimensions(context, &detection_boxes->dims,
1, num_detected_boxes, 4));
}
// Output Tensor detection_classes: size is set to (1, num_detected_boxes)
TfLiteTensor* detection_classes =
GetOutput(context, node, kOutputTensorDetectionClasses);
if (detection_classes->dims->size == 0) {
TF_LITE_ENSURE_STATUS(AllocateOutDimensions(
context, &detection_classes->dims, 1, num_detected_boxes));
}
// Output Tensor detection_scores: size is set to (1, num_detected_boxes)
TfLiteTensor* detection_scores =
GetOutput(context, node, kOutputTensorDetectionScores);
if (detection_scores->dims->size == 0) {
TF_LITE_ENSURE_STATUS(AllocateOutDimensions(
context, &detection_scores->dims, 1, num_detected_boxes));
}
// Output Tensor num_detections: size is set to 1
TfLiteTensor* num_detections =
GetOutput(context, node, kOutputTensorNumDetections);
if (num_detections->dims->size == 0) {
TF_LITE_ENSURE_STATUS(
AllocateOutDimensions(context, &num_detections->dims, 1));
}
return kTfLiteOk;
}
class Dequantizer {
public:
Dequantizer(int zero_point, float scale)
: zero_point_(zero_point), scale_(scale) {}
float operator()(uint8_t x) {
return (static_cast<float>(x) - zero_point_) * scale_;
}
private:
int zero_point_;
float scale_;
};
void DequantizeBoxEncodings(const TfLiteEvalTensor* input_box_encodings,
int idx, float quant_zero_point, float quant_scale,
int length_box_encoding,
CenterSizeEncoding* box_centersize) {
const uint8_t* boxes =
tflite::micro::GetTensorData<uint8_t>(input_box_encodings) +
length_box_encoding * idx;
Dequantizer dequantize(quant_zero_point, quant_scale);
// See definition of the KeyPointBoxCoder at
// https://github.com/tensorflow/models/blob/master/research/object_detection/box_coders/keypoint_box_coder.py
// The first four elements are the box coordinates, which is the same as the
// FastRnnBoxCoder at
// https://github.com/tensorflow/models/blob/master/research/object_detection/box_coders/faster_rcnn_box_coder.py
box_centersize->y = dequantize(boxes[0]);
box_centersize->x = dequantize(boxes[1]);
box_centersize->h = dequantize(boxes[2]);
box_centersize->w = dequantize(boxes[3]);
}
template <class T>
T ReInterpretTensor(const TfLiteEvalTensor* tensor) {
const float* tensor_base = tflite::micro::GetTensorData<float>(tensor);
return reinterpret_cast<T>(tensor_base);
}
template <class T>
T ReInterpretTensor(TfLiteEvalTensor* tensor) {
float* tensor_base = tflite::micro::GetTensorData<float>(tensor);
return reinterpret_cast<T>(tensor_base);
}
TfLiteStatus DecodeCenterSizeBoxes(TfLiteContext* context, TfLiteNode* node,
OpData* op_data) {
// Parse input tensor boxencodings
const TfLiteEvalTensor* input_box_encodings =
tflite::micro::GetEvalInput(context, node, kInputTensorBoxEncodings);
TF_LITE_ENSURE_EQ(context, input_box_encodings->dims->data[0], kBatchSize);
const int num_boxes = input_box_encodings->dims->data[1];
TF_LITE_ENSURE(context, input_box_encodings->dims->data[2] >= kNumCoordBox);
const TfLiteEvalTensor* input_anchors =
tflite::micro::GetEvalInput(context, node, kInputTensorAnchors);
// Decode the boxes to get (ymin, xmin, ymax, xmax) based on the anchors
CenterSizeEncoding box_centersize;
CenterSizeEncoding scale_values = op_data->scale_values;
CenterSizeEncoding anchor;
for (int idx = 0; idx < num_boxes; ++idx) {
switch (input_box_encodings->type) {
// Quantized
case kTfLiteUInt8:
DequantizeBoxEncodings(
input_box_encodings, idx,
static_cast<float>(op_data->input_box_encodings.zero_point),
static_cast<float>(op_data->input_box_encodings.scale),
input_box_encodings->dims->data[2], &box_centersize);
DequantizeBoxEncodings(
input_anchors, idx,
static_cast<float>(op_data->input_anchors.zero_point),
static_cast<float>(op_data->input_anchors.scale), kNumCoordBox,
&anchor);
break;
// Float
case kTfLiteFloat32: {
// Please see DequantizeBoxEncodings function for the support detail.
const int box_encoding_idx = idx * input_box_encodings->dims->data[2];
const float* boxes = &(tflite::micro::GetTensorData<float>(
input_box_encodings)[box_encoding_idx]);
box_centersize = *reinterpret_cast<const CenterSizeEncoding*>(boxes);
anchor =
ReInterpretTensor<const CenterSizeEncoding*>(input_anchors)[idx];
break;
}
default:
// Unsupported type.
return kTfLiteError;
}
float ycenter = box_centersize.y / scale_values.y * anchor.h + anchor.y;
float xcenter = box_centersize.x / scale_values.x * anchor.w + anchor.x;
float half_h =
0.5f * static_cast<float>(std::exp(box_centersize.h / scale_values.h)) *
anchor.h;
float half_w =
0.5f * static_cast<float>(std::exp(box_centersize.w / scale_values.w)) *
anchor.w;
float* decoded_boxes = reinterpret_cast<float*>(
context->GetScratchBuffer(context, op_data->decoded_boxes_idx));
auto& box = reinterpret_cast<BoxCornerEncoding*>(decoded_boxes)[idx];
box.ymin = ycenter - half_h;
box.xmin = xcenter - half_w;
box.ymax = ycenter + half_h;
box.xmax = xcenter + half_w;
}
return kTfLiteOk;
}
void DecreasingPartialArgSort(const float* values, int num_values,
int num_to_sort, int* indices) {
std::iota(indices, indices + num_values, 0);
std::partial_sort(
indices, indices + num_to_sort, indices + num_values,
[&values](const int i, const int j) { return values[i] > values[j]; });
}
void DecreasingPartialArgSort2(const float* values, int num_values,
int num_to_sort, int* indices, int* ind) {
std::iota(ind, ind + num_values, 0);
std::partial_sort(
ind, ind + num_to_sort, ind + num_values,
[&values](const int i, const int j) { return values[i] > values[j]; });
std::iota(indices, indices + num_values, 0);
std::partial_sort(
indices, indices + num_to_sort, indices + num_values,
[&values](const int i, const int j) { return values[i] > values[j]; });
}
int SelectDetectionsAboveScoreThreshold(const float* values, int size,
const float threshold,
float* keep_values, int* keep_indices) {
int counter = 0;
for (int i = 0; i < size; i++) {
if (values[i] >= threshold) {
keep_values[counter++] = values[i];
keep_indices[i] = i;
}
}
return counter;
}
bool ValidateBoxes(const float* decoded_boxes, const int num_boxes) {
for (int i = 0; i < num_boxes; ++i) {
// ymax>=ymin, xmax>=xmin
auto& box = reinterpret_cast<const BoxCornerEncoding*>(decoded_boxes)[i];
if (box.ymin >= box.ymax || box.xmin >= box.xmax) {
return false;
}
}
return true;
}
float ComputeIntersectionOverUnion(const float* decoded_boxes, const int i,
const int j) {
auto& box_i = reinterpret_cast<const BoxCornerEncoding*>(decoded_boxes)[i];
auto& box_j = reinterpret_cast<const BoxCornerEncoding*>(decoded_boxes)[j];
const float area_i = (box_i.ymax - box_i.ymin) * (box_i.xmax - box_i.xmin);
const float area_j = (box_j.ymax - box_j.ymin) * (box_j.xmax - box_j.xmin);
if (area_i <= 0 || area_j <= 0) return 0.0;
const float intersection_ymin = std::max<float>(box_i.ymin, box_j.ymin);
const float intersection_xmin = std::max<float>(box_i.xmin, box_j.xmin);
const float intersection_ymax = std::min<float>(box_i.ymax, box_j.ymax);
const float intersection_xmax = std::min<float>(box_i.xmax, box_j.xmax);
const float intersection_area =
std::max<float>(intersection_ymax - intersection_ymin, 0.0) *
std::max<float>(intersection_xmax - intersection_xmin, 0.0);
return intersection_area / (area_i + area_j - intersection_area);
}
// NonMaxSuppressionSingleClass() prunes out the box locations with high overlap
// before selecting the highest scoring boxes (max_detections in number)
// It assumes all boxes are good in beginning and sorts based on the scores.
// If lower-scoring box has too much overlap with a higher-scoring box,
// we get rid of the lower-scoring box.
// Complexity is O(N^2) pairwise comparison between boxes
TfLiteStatus NonMaxSuppressionSingleClassHelper(
TfLiteContext* context, TfLiteNode* node, OpData* op_data,
const float* scores, int* selected, int* selected_size,
int max_detections) {
const TfLiteEvalTensor* input_box_encodings =
tflite::micro::GetEvalInput(context, node, kInputTensorBoxEncodings);
const int num_boxes = input_box_encodings->dims->data[1];
const float non_max_suppression_score_threshold =
op_data->non_max_suppression_score_threshold;
const float intersection_over_union_threshold =
op_data->intersection_over_union_threshold;
// Maximum detections should be positive.
TF_LITE_ENSURE(context, (max_detections >= 0));
// intersection_over_union_threshold should be positive
// and should be less than 1.
TF_LITE_ENSURE(context, (intersection_over_union_threshold > 0.0f) &&
(intersection_over_union_threshold <= 1.0f));
// Validate boxes
float* decoded_boxes = reinterpret_cast<float*>(
context->GetScratchBuffer(context, op_data->decoded_boxes_idx));
TF_LITE_ENSURE(context, ValidateBoxes(decoded_boxes, num_boxes));
// threshold scores
int* keep_indices = reinterpret_cast<int*>(
context->GetScratchBuffer(context, op_data->keep_indices_idx));
float* keep_scores = reinterpret_cast<float*>(
context->GetScratchBuffer(context, op_data->keep_scores_idx));
int num_scores_kept = SelectDetectionsAboveScoreThreshold(
scores, num_boxes, non_max_suppression_score_threshold, keep_scores,
keep_indices);
int* sorted_indices = reinterpret_cast<int*>(
context->GetScratchBuffer(context, op_data->sorted_indices_idx));
DecreasingPartialArgSort(keep_scores, num_scores_kept, num_scores_kept,
sorted_indices);
const int num_boxes_kept = num_scores_kept;
const int output_size = std::min(num_boxes_kept, max_detections);
*selected_size = 0;
int num_active_candidate = num_boxes_kept;
uint8_t* active_box_candidate = reinterpret_cast<uint8_t*>(
context->GetScratchBuffer(context, op_data->active_candidate_idx));
for (int row = 0; row < num_boxes_kept; row++) {
active_box_candidate[row] = 1;
}
for (int i = 0; i < num_boxes_kept; ++i) {
if (num_active_candidate == 0 || *selected_size >= output_size) break;
if (active_box_candidate[i] == 1) {
selected[(*selected_size)++] = keep_indices[sorted_indices[i]];
active_box_candidate[i] = 0;
num_active_candidate--;
} else {
continue;
}
for (int j = i + 1; j < num_boxes_kept; ++j) {
if (active_box_candidate[j] == 1) {
float intersection_over_union = ComputeIntersectionOverUnion(
decoded_boxes, keep_indices[sorted_indices[i]],
keep_indices[sorted_indices[j]]);
if (intersection_over_union > intersection_over_union_threshold) {
active_box_candidate[j] = 0;
num_active_candidate--;
}
}
}
}
return kTfLiteOk;
}
// This function implements a regular version of Non Maximal Suppression (NMS)
// for multiple classes where
// 1) we do NMS separately for each class across all anchors and
// 2) keep only the highest anchor scores across all classes
// 3) The worst runtime of the regular NMS is O(K*N^2)
// where N is the number of anchors and K the number of
// classes.
TfLiteStatus NonMaxSuppressionMultiClassRegularHelper(TfLiteContext* context,
TfLiteNode* node,
OpData* op_data,
const float* scores) {
const TfLiteEvalTensor* input_box_encodings =
tflite::micro::GetEvalInput(context, node, kInputTensorBoxEncodings);
const TfLiteEvalTensor* input_class_predictions =
tflite::micro::GetEvalInput(context, node, kInputTensorClassPredictions);
TfLiteEvalTensor* detection_boxes =
tflite::micro::GetEvalOutput(context, node, kOutputTensorDetectionBoxes);
TfLiteEvalTensor* detection_classes = tflite::micro::GetEvalOutput(
context, node, kOutputTensorDetectionClasses);
TfLiteEvalTensor* detection_scores =
tflite::micro::GetEvalOutput(context, node, kOutputTensorDetectionScores);
TfLiteEvalTensor* num_detections =
tflite::micro::GetEvalOutput(context, node, kOutputTensorNumDetections);
const int num_boxes = input_box_encodings->dims->data[1];
const int num_classes = op_data->num_classes;
const int num_detections_per_class = op_data->detections_per_class;
const int max_detections = op_data->max_detections;
const int num_classes_with_background =
input_class_predictions->dims->data[2];
// The row index offset is 1 if background class is included and 0 otherwise.
int label_offset = num_classes_with_background - num_classes;
TF_LITE_ENSURE(context, num_detections_per_class > 0);
// For each class, perform non-max suppression.
float* class_scores = reinterpret_cast<float*>(
context->GetScratchBuffer(context, op_data->score_buffer_idx));
int* box_indices_after_regular_non_max_suppression = reinterpret_cast<int*>(
context->GetScratchBuffer(context, op_data->buffer_idx));
float* scores_after_regular_non_max_suppression =
reinterpret_cast<float*>(context->GetScratchBuffer(
context, op_data->scores_after_regular_non_max_suppression_idx));
int size_of_sorted_indices = 0;
int* sorted_indices = reinterpret_cast<int*>(
context->GetScratchBuffer(context, op_data->sorted_indices_idx));
float* sorted_values = reinterpret_cast<float*>(
context->GetScratchBuffer(context, op_data->sorted_values_idx));
for (int col = 0; col < num_classes; col++) {
for (int row = 0; row < num_boxes; row++) {
// Get scores of boxes corresponding to all anchors for single class
class_scores[row] =
*(scores + row * num_classes_with_background + col + label_offset);
}
// Perform non-maximal suppression on single class
int selected_size = 0;
int* selected = reinterpret_cast<int*>(
context->GetScratchBuffer(context, op_data->selected_idx));
TF_LITE_ENSURE_STATUS(NonMaxSuppressionSingleClassHelper(
context, node, op_data, class_scores, selected, &selected_size,
num_detections_per_class));
// Add selected indices from non-max suppression of boxes in this class
int output_index = size_of_sorted_indices;
for (int i = 0; i < selected_size; i++) {
int selected_index = selected[i];
box_indices_after_regular_non_max_suppression[output_index] =
(selected_index * num_classes_with_background + col + label_offset);
scores_after_regular_non_max_suppression[output_index] =
class_scores[selected_index];
output_index++;
}
// Sort the max scores among the selected indices
// Get the indices for top scores
int num_indices_to_sort = std::min(output_index, max_detections);
DecreasingPartialArgSort(scores_after_regular_non_max_suppression,
output_index, num_indices_to_sort, sorted_indices);
// Copy values to temporary vectors
for (int row = 0; row < num_indices_to_sort; row++) {
int temp = sorted_indices[row];
sorted_indices[row] = box_indices_after_regular_non_max_suppression[temp];
sorted_values[row] = scores_after_regular_non_max_suppression[temp];
}
// Copy scores and indices from temporary vectors
for (int row = 0; row < num_indices_to_sort; row++) {
box_indices_after_regular_non_max_suppression[row] = sorted_indices[row];
scores_after_regular_non_max_suppression[row] = sorted_values[row];
}
size_of_sorted_indices = num_indices_to_sort;
}
// Allocate output tensors
for (int output_box_index = 0; output_box_index < max_detections;
output_box_index++) {
if (output_box_index < size_of_sorted_indices) {
const int anchor_index = floor(
box_indices_after_regular_non_max_suppression[output_box_index] /
num_classes_with_background);
const int class_index =
box_indices_after_regular_non_max_suppression[output_box_index] -
anchor_index * num_classes_with_background - label_offset;
const float selected_score =
scores_after_regular_non_max_suppression[output_box_index];
// detection_boxes
float* decoded_boxes = reinterpret_cast<float*>(
context->GetScratchBuffer(context, op_data->decoded_boxes_idx));
ReInterpretTensor<BoxCornerEncoding*>(detection_boxes)[output_box_index] =
reinterpret_cast<BoxCornerEncoding*>(decoded_boxes)[anchor_index];
// detection_classes
tflite::micro::GetTensorData<float>(detection_classes)[output_box_index] =
class_index;
// detection_scores
tflite::micro::GetTensorData<float>(detection_scores)[output_box_index] =
selected_score;
} else {
ReInterpretTensor<BoxCornerEncoding*>(
detection_boxes)[output_box_index] = {0.0f, 0.0f, 0.0f, 0.0f};
// detection_classes
tflite::micro::GetTensorData<float>(detection_classes)[output_box_index] =
0.0f;
// detection_scores
tflite::micro::GetTensorData<float>(detection_scores)[output_box_index] =
0.0f;
}
}
tflite::micro::GetTensorData<float>(num_detections)[0] =
size_of_sorted_indices;
return kTfLiteOk;
}
// This function implements a fast version of Non Maximal Suppression for
// multiple classes where
// 1) we keep the top-k scores for each anchor and
// 2) during NMS, each anchor only uses the highest class score for sorting.
// 3) Compared to standard NMS, the worst runtime of this version is O(N^2)
// instead of O(KN^2) where N is the number of anchors and K the number of
// classes.
TfLiteStatus NonMaxSuppressionMultiClassFastHelper(TfLiteContext* context,
TfLiteNode* node,
OpData* op_data,
const float* scores) {
const TfLiteEvalTensor* input_box_encodings =
tflite::micro::GetEvalInput(context, node, kInputTensorBoxEncodings);
const TfLiteEvalTensor* input_class_predictions =
tflite::micro::GetEvalInput(context, node, kInputTensorClassPredictions);
TfLiteEvalTensor* detection_boxes =
tflite::micro::GetEvalOutput(context, node, kOutputTensorDetectionBoxes);
TfLiteEvalTensor* detection_classes = tflite::micro::GetEvalOutput(
context, node, kOutputTensorDetectionClasses);
TfLiteEvalTensor* detection_scores =
tflite::micro::GetEvalOutput(context, node, kOutputTensorDetectionScores);
TfLiteEvalTensor* num_detections =
tflite::micro::GetEvalOutput(context, node, kOutputTensorNumDetections);
const int num_boxes = input_box_encodings->dims->data[1];
const int num_classes = op_data->num_classes;
const int max_categories_per_anchor = op_data->max_classes_per_detection;
const int num_classes_with_background =
input_class_predictions->dims->data[2];
// The row index offset is 1 if background class is included and 0 otherwise.
int label_offset = num_classes_with_background - num_classes;
TF_LITE_ENSURE(context, (max_categories_per_anchor > 0));
const int num_categories_per_anchor =
std::min(max_categories_per_anchor, num_classes);
float* max_scores = reinterpret_cast<float*>(
context->GetScratchBuffer(context, op_data->score_buffer_idx));
int* sorted_class_indices = reinterpret_cast<int*>(
context->GetScratchBuffer(context, op_data->buffer_idx));
for (int row = 0; row < num_boxes; row++) {
const float* box_scores =
scores + row * num_classes_with_background + label_offset;
int* class_indices = sorted_class_indices + row * num_classes;
DecreasingPartialArgSort(box_scores, num_classes, num_categories_per_anchor,
class_indices);
max_scores[row] = box_scores[class_indices[0]];
}
// Perform non-maximal suppression on max scores
int selected_size = 0;
int* selected = reinterpret_cast<int*>(
context->GetScratchBuffer(context, op_data->selected_idx));
TF_LITE_ENSURE_STATUS(NonMaxSuppressionSingleClassHelper(
context, node, op_data, max_scores, selected, &selected_size,
op_data->max_detections));
// Allocate output tensors
int output_box_index = 0;
for (int i = 0; i < selected_size; i++) {
int selected_index = selected[i];
const float* box_scores =
scores + selected_index * num_classes_with_background + label_offset;
const int* class_indices =
sorted_class_indices + selected_index * num_classes;
for (int col = 0; col < num_categories_per_anchor; ++col) {
int box_offset = num_categories_per_anchor * output_box_index + col;
// detection_boxes
float* decoded_boxes = reinterpret_cast<float*>(
context->GetScratchBuffer(context, op_data->decoded_boxes_idx));
ReInterpretTensor<BoxCornerEncoding*>(detection_boxes)[box_offset] =
reinterpret_cast<BoxCornerEncoding*>(decoded_boxes)[selected_index];
// detection_classes
tflite::micro::GetTensorData<float>(detection_classes)[box_offset] =
class_indices[col];
// detection_scores
tflite::micro::GetTensorData<float>(detection_scores)[box_offset] =
box_scores[class_indices[col]];
output_box_index++;
}
}
tflite::micro::GetTensorData<float>(num_detections)[0] = output_box_index;
return kTfLiteOk;
}
void DequantizeClassPredictions(const TfLiteEvalTensor* input_class_predictions,
const int num_boxes,
const int num_classes_with_background,
float* scores, OpData* op_data) {
float quant_zero_point =
static_cast<float>(op_data->input_class_predictions.zero_point);
float quant_scale =
static_cast<float>(op_data->input_class_predictions.scale);
Dequantizer dequantize(quant_zero_point, quant_scale);
const uint8_t* scores_quant =
tflite::micro::GetTensorData<uint8_t>(input_class_predictions);
for (int idx = 0; idx < num_boxes * num_classes_with_background; ++idx) {
scores[idx] = dequantize(scores_quant[idx]);
}
}
TfLiteStatus NonMaxSuppressionMultiClass(TfLiteContext* context,
TfLiteNode* node, OpData* op_data) {
// Get the input tensors
const TfLiteEvalTensor* input_box_encodings =
tflite::micro::GetEvalInput(context, node, kInputTensorBoxEncodings);
const TfLiteEvalTensor* input_class_predictions =
tflite::micro::GetEvalInput(context, node, kInputTensorClassPredictions);
const int num_boxes = input_box_encodings->dims->data[1];
const int num_classes = op_data->num_classes;
TF_LITE_ENSURE_EQ(context, input_class_predictions->dims->data[0],
kBatchSize);
TF_LITE_ENSURE_EQ(context, input_class_predictions->dims->data[1], num_boxes);
const int num_classes_with_background =
input_class_predictions->dims->data[2];
TF_LITE_ENSURE(context, (num_classes_with_background - num_classes <= 1));
TF_LITE_ENSURE(context, (num_classes_with_background >= num_classes));
const float* scores;
switch (input_class_predictions->type) {
case kTfLiteUInt8: {
float* temporary_scores = reinterpret_cast<float*>(
context->GetScratchBuffer(context, op_data->scores_idx));
DequantizeClassPredictions(input_class_predictions, num_boxes,
num_classes_with_background, temporary_scores,
op_data);
scores = temporary_scores;
} break;
case kTfLiteFloat32:
scores = tflite::micro::GetTensorData<float>(input_class_predictions);
break;
default:
// Unsupported type.
return kTfLiteError;
}
if (op_data->use_regular_non_max_suppression)
TF_LITE_ENSURE_STATUS(NonMaxSuppressionMultiClassRegularHelper(
context, node, op_data, scores));
else
TF_LITE_ENSURE_STATUS(
NonMaxSuppressionMultiClassFastHelper(context, node, op_data, scores));
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE(context, (kBatchSize == 1));
auto* op_data = static_cast<OpData*>(node->user_data);
// These two functions correspond to two blocks in the Object Detection model.
// In future, we would like to break the custom op in two blocks, which is
// currently not feasible because we would like to input quantized inputs
// and do all calculations in float. Mixed quantized/float calculations are
// currently not supported in TFLite.
// This fills in temporary decoded_boxes
// by transforming input_box_encodings and input_anchors from
// CenterSizeEncodings to BoxCornerEncoding
TF_LITE_ENSURE_STATUS(DecodeCenterSizeBoxes(context, node, op_data));
// This fills in the output tensors
// by choosing effective set of decoded boxes
// based on Non Maximal Suppression, i.e. selecting
// highest scoring non-overlapping boxes.
TF_LITE_ENSURE_STATUS(NonMaxSuppressionMultiClass(context, node, op_data));
return kTfLiteOk;
}
} // namespace detection_postprocess
TfLiteRegistration Register_DETECTION_POSTPROCESS() {
return {/*init=*/detection_postprocess::Init,
/*free=*/nullptr,
/*prepare=*/detection_postprocess::Prepare,
/*invoke=*/detection_postprocess::Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@ -0,0 +1,496 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "flatbuffers/flexbuffers.h" // from @flatbuffers
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/kernels/kernel_runner.h"
#include "tensorflow/lite/micro/kernels/micro_ops.h"
#include "tensorflow/lite/micro/testing/micro_test.h"
#include "tensorflow/lite/micro/testing/test_utils.h"
namespace tflite {
namespace testing {
namespace {
// Common inputs and outputs.
static const int kInputShape1[] = {3, 1, 6, 4};
static const int kInputShape2[] = {3, 1, 6, 3};
static const int kInputShape3[] = {2, 6, 4};
static const int kOutputShape1[] = {3, 1, 3, 4};
static const int kOutputShape2[] = {2, 1, 3};
static const int kOutputShape3[] = {2, 1, 3};
static const int kOutputShape4[] = {1, 1};
// six boxes in center-size encoding
static const float kInputData1[] = {
0.0, 0.0, 0.0, 0.0, // box #1
0.0, 1.0, 0.0, 0.0, // box #2
0.0, -1.0, 0.0, 0.0, // box #3
0.0, 0.0, 0.0, 0.0, // box #4
0.0, 1.0, 0.0, 0.0, // box #5
0.0, 0.0, 0.0, 0.0 // box #6
};
// class scores - two classes with background
static const float kInputData2[] = {0., .9, .8, 0., .75, .72, 0., .6, .5,
0., .93, .95, 0., .5, .4, 0., .3, .2};
// six anchors in center-size encoding
static const float kInputData3[] = {
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
};
// Same boxes in box-corner encoding:
// { 0.0, 0.0, 1.0, 1.0,
// 0.0, 0.1, 1.0, 1.1,
// 0.0, -0.1, 1.0, 0.9,
// 0.0, 10.0, 1.0, 11.0,
// 0.0, 10.1, 1.0, 11.1,
// 0.0, 100.0, 1.0, 101.0}
static const float kGolden1[] = {0.0, 10.0, 1.0, 11.0, 0.0, 0.0,
1.0, 1.0, 0.0, 100.0, 1.0, 101.0};
static const float kGolden2[] = {1, 0, 0};
static const float kGolden3[] = {0.95, 0.9, 0.3};
static const float kGolden4[] = {3.0};
void TestDetectionPostprocess(
const int* input_dims_data1, const float* input_data1,
const int* input_dims_data2, const float* input_data2,
const int* input_dims_data3, const float* input_data3,
const int* output_dims_data1, float* output_data1,
const int* output_dims_data2, float* output_data2,
const int* output_dims_data3, float* output_data3,
const int* output_dims_data4, float* output_data4, const float* golden1,
const float* golden2, const float* golden3, const float* golden4,
const float tolerance, bool use_regular_nms,
uint8_t* input_data_quantized1 = nullptr,
uint8_t* input_data_quantized2 = nullptr,
uint8_t* input_data_quantized3 = nullptr, const float input_min1 = 0,
const float input_max1 = 0, const float input_min2 = 0,
const float input_max2 = 0, const float input_min3 = 0,
const float input_max3 = 0) {
TfLiteIntArray* input_dims1 = IntArrayFromInts(input_dims_data1);
TfLiteIntArray* input_dims2 = IntArrayFromInts(input_dims_data2);
TfLiteIntArray* input_dims3 = IntArrayFromInts(input_dims_data3);
TfLiteIntArray* output_dims1 = nullptr;
TfLiteIntArray* output_dims2 = nullptr;
TfLiteIntArray* output_dims3 = nullptr;
TfLiteIntArray* output_dims4 = nullptr;
const int zero_length_int_array_data[] = {0};
TfLiteIntArray* zero_length_int_array =
IntArrayFromInts(zero_length_int_array_data);
output_dims1 = output_dims_data1 == nullptr
? const_cast<TfLiteIntArray*>(zero_length_int_array)
: IntArrayFromInts(output_dims_data1);
output_dims2 = output_dims_data2 == nullptr
? const_cast<TfLiteIntArray*>(zero_length_int_array)
: IntArrayFromInts(output_dims_data2);
output_dims3 = output_dims_data3 == nullptr
? const_cast<TfLiteIntArray*>(zero_length_int_array)
: IntArrayFromInts(output_dims_data3);
output_dims4 = output_dims_data4 == nullptr
? const_cast<TfLiteIntArray*>(zero_length_int_array)
: IntArrayFromInts(output_dims_data4);
constexpr int inputs_size = 3;
constexpr int outputs_size = 4;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size];
if (input_min1 != 0 || input_max1 != 0 || input_min2 != 0 ||
input_max2 != 0 || input_min3 != 0 || input_max3 != 0) {
const float input_scale1 = ScaleFromMinMax<uint8_t>(input_min1, input_max1);
const int input_zero_point1 =
ZeroPointFromMinMax<uint8_t>(input_min1, input_max1);
const float input_scale2 = ScaleFromMinMax<uint8_t>(input_min2, input_max2);
const int input_zero_point2 =
ZeroPointFromMinMax<uint8_t>(input_min2, input_max2);
const float input_scale3 = ScaleFromMinMax<uint8_t>(input_min3, input_max3);
const int input_zero_point3 =
ZeroPointFromMinMax<uint8_t>(input_min3, input_max3);
tensors[0] =
CreateQuantizedTensor(input_data1, input_data_quantized1, input_dims1,
input_scale1, input_zero_point1);
tensors[1] =
CreateQuantizedTensor(input_data2, input_data_quantized2, input_dims2,
input_scale2, input_zero_point2);
tensors[2] =
CreateQuantizedTensor(input_data3, input_data_quantized3, input_dims3,
input_scale3, input_zero_point3);
} else {
tensors[0] = CreateFloatTensor(input_data1, input_dims1);
tensors[1] = CreateFloatTensor(input_data2, input_dims2);
tensors[2] = CreateFloatTensor(input_data3, input_dims3);
}
tensors[3] = CreateFloatTensor(output_data1, output_dims1);
tensors[4] = CreateFloatTensor(output_data2, output_dims2);
tensors[5] = CreateFloatTensor(output_data3, output_dims3);
tensors[6] = CreateFloatTensor(output_data4, output_dims4);
TfLiteContext context;
PopulateContext(tensors, tensors_size, micro_test::reporter, &context);
flexbuffers::Builder fbb;
fbb.Map([&]() {
fbb.Int("max_detections", 3);
fbb.Int("max_classes_per_detection", 1);
fbb.Int("detections_per_class", 1);
fbb.Bool("use_regular_nms", use_regular_nms);
fbb.Float("nms_score_threshold", 0.0);
fbb.Float("nms_iou_threshold", 0.5);
fbb.Int("num_classes", 2);
fbb.Float("y_scale", 10.0);
fbb.Float("x_scale", 10.0);
fbb.Float("h_scale", 5.0);
fbb.Float("w_scale", 5.0);
});
fbb.Finish();
const TfLiteRegistration& registration =
tflite::ops::micro::Register_DETECTION_POSTPROCESS();
TF_LITE_MICRO_EXPECT_NE(nullptr, &registration);
int inputs_array_data[] = {3, 0, 1, 2};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {4, 3, 4, 5, 6};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
outputs_array, nullptr, micro_test::reporter);
const char* init_data = reinterpret_cast<const char*>(fbb.GetBuffer().data());
TF_LITE_MICRO_EXPECT_EQ(
kTfLiteOk, runner.InitAndPrepare(init_data, fbb.GetBuffer().size()));
// Output dimensions should not be undefined after Prepare
TF_LITE_MICRO_EXPECT_NE(nullptr, tensors[3].dims);
TF_LITE_MICRO_EXPECT_NE(nullptr, tensors[4].dims);
TF_LITE_MICRO_EXPECT_NE(nullptr, tensors[5].dims);
TF_LITE_MICRO_EXPECT_NE(nullptr, tensors[6].dims);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
const int output_elements_count1 = tensors[3].dims->size;
const int output_elements_count2 = tensors[4].dims->size;
const int output_elements_count3 = tensors[5].dims->size;
const int output_elements_count4 = tensors[6].dims->size;
for (int i = 0; i < output_elements_count1; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(golden1[i], output_data1[i], tolerance);
}
for (int i = 0; i < output_elements_count2; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(golden2[i], output_data2[i], tolerance);
}
for (int i = 0; i < output_elements_count3; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(golden3[i], output_data3[i], tolerance);
}
for (int i = 0; i < output_elements_count4; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(golden4[i], output_data4[i], tolerance);
}
}
} // namespace
} // namespace testing
} // namespace tflite
TF_LITE_MICRO_TESTS_BEGIN
TF_LITE_MICRO_TEST(DetectionPostprocessFloatFastNMS) {
float output_data1[12];
float output_data2[3];
float output_data3[3];
float output_data4[1];
tflite::testing::TestDetectionPostprocess(
tflite::testing::kInputShape1, tflite::testing::kInputData1,
tflite::testing::kInputShape2, tflite::testing::kInputData2,
tflite::testing::kInputShape3, tflite::testing::kInputData3,
tflite::testing::kOutputShape1, output_data1,
tflite::testing::kOutputShape2, output_data2,
tflite::testing::kOutputShape3, output_data3,
tflite::testing::kOutputShape4, output_data4, tflite::testing::kGolden1,
tflite::testing::kGolden2, tflite::testing::kGolden3,
tflite::testing::kGolden4,
/* tolerance */ 0, /* Use regular NMS: */ false);
}
TF_LITE_MICRO_TEST(DetectionPostprocessQuantizedFastNMS) {
float output_data1[12];
float output_data2[3];
float output_data3[3];
float output_data4[1];
const int kInputElements1 = tflite::testing::kInputShape1[1] *
tflite::testing::kInputShape1[2] *
tflite::testing::kInputShape1[3];
const int kInputElements2 = tflite::testing::kInputShape2[1] *
tflite::testing::kInputShape2[2] *
tflite::testing::kInputShape2[3];
const int kInputElements3 =
tflite::testing::kInputShape3[1] * tflite::testing::kInputShape3[2];
uint8_t input_data_quantized1[kInputElements1 + 10];
uint8_t input_data_quantized2[kInputElements2 + 10];
uint8_t input_data_quantized3[kInputElements3 + 10];
tflite::testing::TestDetectionPostprocess(
tflite::testing::kInputShape1, tflite::testing::kInputData1,
tflite::testing::kInputShape2, tflite::testing::kInputData2,
tflite::testing::kInputShape3, tflite::testing::kInputData3,
tflite::testing::kOutputShape1, output_data1,
tflite::testing::kOutputShape2, output_data2,
tflite::testing::kOutputShape3, output_data3,
tflite::testing::kOutputShape4, output_data4, tflite::testing::kGolden1,
tflite::testing::kGolden2, tflite::testing::kGolden3,
tflite::testing::kGolden4,
/* tolerance */ 3e-1, /* Use regular NMS: */ false, input_data_quantized1,
input_data_quantized2, input_data_quantized3,
/* input1 min/max*/ -1.0, 1.0, /* input2 min/max */ 0.0, 1.0,
/* input3 min/max */ 0.0, 100.5);
}
TF_LITE_MICRO_TEST(DetectionPostprocessFloatRegularNMS) {
float output_data1[12];
float output_data2[3];
float output_data3[3];
float output_data4[1];
const float kGolden1[] = {0.0, 10.0, 1.0, 11.0, 0.0, 10.0,
1.0, 11.0, 0.0, 0.0, 0.0, 0.0};
const float kGolden3[] = {0.95, 0.9, 0.0};
const float kGolden4[] = {2.0};
tflite::testing::TestDetectionPostprocess(
tflite::testing::kInputShape1, tflite::testing::kInputData1,
tflite::testing::kInputShape2, tflite::testing::kInputData2,
tflite::testing::kInputShape3, tflite::testing::kInputData3,
tflite::testing::kOutputShape1, output_data1,
tflite::testing::kOutputShape2, output_data2,
tflite::testing::kOutputShape3, output_data3,
tflite::testing::kOutputShape4, output_data4, kGolden1,
tflite::testing::kGolden2, kGolden3, kGolden4,
/* tolerance */ 1e-1, /* Use regular NMS: */ true);
}
TF_LITE_MICRO_TEST(DetectionPostprocessQuantizedRegularNMS) {
float output_data1[12];
float output_data2[3];
float output_data3[3];
float output_data4[1];
const int kInputElements1 = tflite::testing::kInputShape1[1] *
tflite::testing::kInputShape1[2] *
tflite::testing::kInputShape1[3];
const int kInputElements2 = tflite::testing::kInputShape2[1] *
tflite::testing::kInputShape2[2] *
tflite::testing::kInputShape2[3];
const int kInputElements3 =
tflite::testing::kInputShape3[1] * tflite::testing::kInputShape3[2];
uint8_t input_data_quantized1[kInputElements1 + 10];
uint8_t input_data_quantized2[kInputElements2 + 10];
uint8_t input_data_quantized3[kInputElements3 + 10];
const float kGolden1[] = {0.0, 10.0, 1.0, 11.0, 0.0, 10.0,
1.0, 11.0, 0.0, 0.0, 0.0, 0.0};
const float kGolden3[] = {0.95, 0.9, 0.0};
const float kGolden4[] = {2.0};
tflite::testing::TestDetectionPostprocess(
tflite::testing::kInputShape1, tflite::testing::kInputData1,
tflite::testing::kInputShape2, tflite::testing::kInputData2,
tflite::testing::kInputShape3, tflite::testing::kInputData3,
tflite::testing::kOutputShape1, output_data1,
tflite::testing::kOutputShape2, output_data2,
tflite::testing::kOutputShape3, output_data3,
tflite::testing::kOutputShape4, output_data4, kGolden1,
tflite::testing::kGolden2, kGolden3, kGolden4,
/* tolerance */ 3e-1, /* Use regular NMS: */ true, input_data_quantized1,
input_data_quantized2, input_data_quantized3,
/* input1 min/max*/ -1.0, 1.0, /* input2 min/max */ 0.0, 1.0,
/* input3 min/max */ 0.0, 100.5);
}
TF_LITE_MICRO_TEST(
DetectionPostprocessFloatFastNMSwithNoBackgroundClassAndKeypoints) {
const int kInputShape1[] = {3, 1, 6, 5};
const int kInputShape2[] = {3, 1, 6, 2};
// six boxes in center-size encoding
const float kInputData1[] = {
0.0, 0.0, 0.0, 0.0, 1.0, // box #1
0.0, 1.0, 0.0, 0.0, 1.0, // box #2
0.0, -1.0, 0.0, 0.0, 1.0, // box #3
0.0, 0.0, 0.0, 0.0, 1.0, // box #4
0.0, 1.0, 0.0, 0.0, 1.0, // box #5
0.0, 0.0, 0.0, 0.0, 1.0, // box #6
};
// class scores - two classes without background
const float kInputData2[] = {.9, .8, .75, .72, .6, .5,
.93, .95, .5, .4, .3, .2};
float output_data1[12];
float output_data2[3];
float output_data3[3];
float output_data4[1];
tflite::testing::TestDetectionPostprocess(
kInputShape1, kInputData1, kInputShape2, kInputData2,
tflite::testing::kInputShape3, tflite::testing::kInputData3,
tflite::testing::kOutputShape1, output_data1,
tflite::testing::kOutputShape2, output_data2,
tflite::testing::kOutputShape3, output_data3,
tflite::testing::kOutputShape4, output_data4, tflite::testing::kGolden1,
tflite::testing::kGolden2, tflite::testing::kGolden3,
tflite::testing::kGolden4,
/* tolerance */ 0, /* Use regular NMS: */ false);
}
TF_LITE_MICRO_TEST(
DetectionPostprocessFloatRegularNMSwithNoBackgroundClassAndKeypoints) {
const int kInputShape2[] = {3, 1, 6, 2};
// class scores - two classes without background
const float kInputData2[] = {.9, .8, .75, .72, .6, .5,
.93, .95, .5, .4, .3, .2};
const float kGolden1[] = {0.0, 10.0, 1.0, 11.0, 0.0, 10.0,
1.0, 11.0, 0.0, 0.0, 0.0, 0.0};
const float kGolden3[] = {0.95, 0.9, 0.0};
const float kGolden4[] = {2.0};
float output_data1[12];
float output_data2[3];
float output_data3[3];
float output_data4[1];
tflite::testing::TestDetectionPostprocess(
tflite::testing::kInputShape1, tflite::testing::kInputData1, kInputShape2,
kInputData2, tflite::testing::kInputShape3, tflite::testing::kInputData3,
tflite::testing::kOutputShape1, output_data1,
tflite::testing::kOutputShape2, output_data2,
tflite::testing::kOutputShape3, output_data3,
tflite::testing::kOutputShape4, output_data4, kGolden1,
tflite::testing::kGolden2, kGolden3, kGolden4,
/* tolerance */ 1e-1, /* Use regular NMS: */ true);
}
TF_LITE_MICRO_TEST(
DetectionPostprocessFloatFastNMSWithBackgroundClassAndKeypoints) {
const int kInputShape1[] = {3, 1, 6, 5};
// six boxes in center-size encoding
const float kInputData1[] = {
0.0, 0.0, 0.0, 0.0, 1.0, // box #1
0.0, 1.0, 0.0, 0.0, 1.0, // box #2
0.0, -1.0, 0.0, 0.0, 1.0, // box #3
0.0, 0.0, 0.0, 0.0, 1.0, // box #4
0.0, 1.0, 0.0, 0.0, 1.0, // box #5
0.0, 0.0, 0.0, 0.0, 1.0, // box #6
};
float output_data1[12];
float output_data2[3];
float output_data3[3];
float output_data4[1];
tflite::testing::TestDetectionPostprocess(
kInputShape1, kInputData1, tflite::testing::kInputShape2,
tflite::testing::kInputData2, tflite::testing::kInputShape3,
tflite::testing::kInputData3, tflite::testing::kOutputShape1,
output_data1, tflite::testing::kOutputShape2, output_data2,
tflite::testing::kOutputShape3, output_data3,
tflite::testing::kOutputShape4, output_data4, tflite::testing::kGolden1,
tflite::testing::kGolden2, tflite::testing::kGolden3,
tflite::testing::kGolden4,
/* tolerance */ 0, /* Use regular NMS: */ false);
}
TF_LITE_MICRO_TEST(
DetectionPostprocessQuantizedFastNMSwithNoBackgroundClassAndKeypoints) {
const int kInputShape1[] = {3, 1, 6, 5};
const int kInputShape2[] = {3, 1, 6, 2};
// six boxes in center-size encoding
const float kInputData1[] = {
0.0, 0.0, 0.0, 0.0, 1.0, // box #1
0.0, 1.0, 0.0, 0.0, 1.0, // box #2
0.0, -1.0, 0.0, 0.0, 1.0, // box #3
0.0, 0.0, 0.0, 0.0, 1.0, // box #4
0.0, 1.0, 0.0, 0.0, 1.0, // box #5
0.0, 0.0, 0.0, 0.0, 1.0, // box #6
};
// class scores - two classes without background
const float kInputData2[] = {.9, .8, .75, .72, .6, .5,
.93, .95, .5, .4, .3, .2};
const int kInputElements1 = tflite::testing::kInputShape1[1] *
tflite::testing::kInputShape1[2] *
tflite::testing::kInputShape1[3];
const int kInputElements2 = tflite::testing::kInputShape2[1] *
tflite::testing::kInputShape2[2] *
tflite::testing::kInputShape2[3];
const int kInputElements3 =
tflite::testing::kInputShape3[1] * tflite::testing::kInputShape3[2];
uint8_t input_data_quantized1[kInputElements1 + 10];
uint8_t input_data_quantized2[kInputElements2 + 10];
uint8_t input_data_quantized3[kInputElements3 + 10];
float output_data1[12];
float output_data2[3];
float output_data3[3];
float output_data4[1];
tflite::testing::TestDetectionPostprocess(
kInputShape1, kInputData1, kInputShape2, kInputData2,
tflite::testing::kInputShape3, tflite::testing::kInputData3,
tflite::testing::kOutputShape1, output_data1,
tflite::testing::kOutputShape2, output_data2,
tflite::testing::kOutputShape3, output_data3,
tflite::testing::kOutputShape4, output_data4, tflite::testing::kGolden1,
tflite::testing::kGolden2, tflite::testing::kGolden3,
tflite::testing::kGolden4,
/* tolerance */ 3e-1, /* Use regular NMS: */ false, input_data_quantized1,
input_data_quantized2, input_data_quantized3,
/* input1 min/max*/ -1.0, 1.0, /* input2 min/max */ 0.0, 1.0,
/* input3 min/max */ 0.0, 100.5);
}
TF_LITE_MICRO_TEST(DetectionPostprocessFloatFastNMSUndefinedOutputDimensions) {
float output_data1[12];
float output_data2[3];
float output_data3[3];
float output_data4[1];
tflite::testing::TestDetectionPostprocess(
tflite::testing::kInputShape1, tflite::testing::kInputData1,
tflite::testing::kInputShape2, tflite::testing::kInputData2,
tflite::testing::kInputShape3, tflite::testing::kInputData3, nullptr,
output_data1, nullptr, output_data2, nullptr, output_data3, nullptr,
output_data4, tflite::testing::kGolden1, tflite::testing::kGolden2,
tflite::testing::kGolden3, tflite::testing::kGolden4,
/* tolerance */ 0, /* Use regular NMS: */ false);
}
TF_LITE_MICRO_TESTS_END

View File

@ -23,16 +23,16 @@ constexpr size_t kBufferAlignment = 16;
} // namespace
// TODO(b/161841696): Consider moving away from global arena buffers:
constexpr int KernelRunner::kNumScratchBuffers_;
constexpr int KernelRunner::kKernelRunnerBufferSize_;
uint8_t KernelRunner::kKernelRunnerBuffer_[];
constexpr int KernelRunner::kNumScratchBuffers;
constexpr int KernelRunner::kKernelRunnerBufferSize;
uint8_t KernelRunner::kernel_runner_buffer_[];
KernelRunner::KernelRunner(const TfLiteRegistration& registration,
TfLiteTensor* tensors, int tensors_size,
TfLiteIntArray* inputs, TfLiteIntArray* outputs,
void* builtin_data, ErrorReporter* error_reporter)
: allocator_(SimpleMemoryAllocator::Create(
error_reporter, kKernelRunnerBuffer_, kKernelRunnerBufferSize_)),
error_reporter, kernel_runner_buffer_, kKernelRunnerBufferSize)),
registration_(registration),
tensors_(tensors),
error_reporter_(error_reporter) {
@ -52,9 +52,10 @@ KernelRunner::KernelRunner(const TfLiteRegistration& registration,
node_.builtin_data = builtin_data;
}
TfLiteStatus KernelRunner::InitAndPrepare(const char* init_data) {
TfLiteStatus KernelRunner::InitAndPrepare(const char* init_data,
size_t length) {
if (registration_.init) {
node_.user_data = registration_.init(&context_, init_data, /*length=*/0);
node_.user_data = registration_.init(&context_, init_data, length);
}
if (registration_.prepare) {
TF_LITE_ENSURE_STATUS(registration_.prepare(&context_, &node_));
@ -117,11 +118,11 @@ TfLiteStatus KernelRunner::RequestScratchBufferInArena(TfLiteContext* context,
KernelRunner* runner = reinterpret_cast<KernelRunner*>(context->impl_);
TFLITE_DCHECK(runner != nullptr);
if (runner->scratch_buffer_count_ == kNumScratchBuffers_) {
if (runner->scratch_buffer_count_ == kNumScratchBuffers) {
TF_LITE_REPORT_ERROR(
runner->error_reporter_,
"Exceeded the maximum number of scratch tensors allowed (%d).",
kNumScratchBuffers_);
kNumScratchBuffers);
return kTfLiteError;
}
@ -142,7 +143,7 @@ void* KernelRunner::GetScratchBuffer(TfLiteContext* context, int buffer_index) {
KernelRunner* runner = reinterpret_cast<KernelRunner*>(context->impl_);
TFLITE_DCHECK(runner != nullptr);
TFLITE_DCHECK(runner->scratch_buffer_count_ <= kNumScratchBuffers_);
TFLITE_DCHECK(runner->scratch_buffer_count_ <= kNumScratchBuffers);
if (buffer_index >= runner->scratch_buffer_count_) {
return nullptr;
}

View File

@ -39,7 +39,8 @@ class KernelRunner {
// Calls init and prepare on the kernel (i.e. TfLiteRegistration) struct. Any
// exceptions will be reported through the error_reporter and returned as a
// status code here.
TfLiteStatus InitAndPrepare(const char* init_data = nullptr);
TfLiteStatus InitAndPrepare(const char* init_data = nullptr,
size_t length = 0);
// Calls init, prepare, and invoke on a given TfLiteRegistration pointer.
// After successful invoke, results will be available in the output tensor as
@ -60,10 +61,10 @@ class KernelRunner {
...);
private:
static constexpr int kNumScratchBuffers_ = 5;
static constexpr int kNumScratchBuffers = 12;
static constexpr int kKernelRunnerBufferSize_ = 10000;
static uint8_t kKernelRunnerBuffer_[kKernelRunnerBufferSize_];
static constexpr int kKernelRunnerBufferSize = 10000;
static uint8_t kernel_runner_buffer_[kKernelRunnerBufferSize];
SimpleMemoryAllocator* allocator_ = nullptr;
const TfLiteRegistration& registration_;
@ -74,7 +75,7 @@ class KernelRunner {
TfLiteNode node_ = {};
int scratch_buffer_count_ = 0;
uint8_t* scratch_buffers_[kNumScratchBuffers_];
uint8_t* scratch_buffers_[kNumScratchBuffers];
};
} // namespace micro

View File

@ -42,6 +42,7 @@ TfLiteRegistration Register_CONCATENATION();
TfLiteRegistration Register_COS();
TfLiteRegistration Register_DEPTHWISE_CONV_2D();
TfLiteRegistration Register_DEQUANTIZE();
TfLiteRegistration Register_DETECTION_POSTPROCESS();
TfLiteRegistration Register_EQUAL();
TfLiteRegistration Register_FLOOR();
TfLiteRegistration Register_FULLY_CONNECTED();

View File

@ -884,7 +884,11 @@ TfLiteTensor CreateFloatTensor(const float* data, TfLiteIntArray* dims,
TfLiteTensor result = CreateTensor(dims, is_variable);
result.type = kTfLiteFloat32;
result.data.f = const_cast<float*>(data);
result.bytes = ElementCount(*dims) * sizeof(float);
if (dims == nullptr) {
result.bytes = 0;
} else {
result.bytes = ElementCount(*dims) * sizeof(float);
}
return result;
}

View File

@ -36,7 +36,7 @@ constexpr size_t kBufferAlignment = 16;
// We store the pointer to the ith scratch buffer to implement the Request/Get
// ScratchBuffer API for the tests. scratch_buffers_[i] will be the ith scratch
// buffer and will still be allocated from within raw_arena_.
constexpr int kNumScratchBuffers = 5;
constexpr int kNumScratchBuffers = 12;
uint8_t* scratch_buffers_[kNumScratchBuffers];
int scratch_buffer_count_ = 0;

View File

@ -281,6 +281,8 @@ third_party/gemmlowp/LICENSE \
third_party/flatbuffers/include/flatbuffers/base.h \
third_party/flatbuffers/include/flatbuffers/stl_emulation.h \
third_party/flatbuffers/include/flatbuffers/flatbuffers.h \
third_party/flatbuffers/include/flatbuffers/flexbuffers.h \
third_party/flatbuffers/include/flatbuffers/util.h \
third_party/flatbuffers/LICENSE.txt \
third_party/ruy/ruy/profiler/instrumentation.h

View File

@ -65,7 +65,8 @@ ifeq ($(TARGET), bluepill)
tensorflow/lite/micro/micro_allocator_test.cc \
tensorflow/lite/micro/memory_helpers_test.cc \
tensorflow/lite/micro/memory_arena_threshold_test.cc \
tensorflow/lite/micro/kernels/circular_buffer_test.cc
tensorflow/lite/micro/kernels/circular_buffer_test.cc \
tensorflow/lite/micro/kernels/detection_postprocess_test.cc
MICROLITE_TEST_SRCS := $(filter-out $(EXCLUDED_TESTS), $(MICROLITE_TEST_SRCS))
EXCLUDED_EXAMPLE_TESTS := \

View File

@ -71,8 +71,8 @@ ifeq ($(TARGET), stm32f4)
tensorflow/lite/micro/recording_micro_allocator_test.cc \
tensorflow/lite/micro/kernels/circular_buffer_test.cc \
tensorflow/lite/micro/kernels/conv_test.cc \
tensorflow/lite/micro/kernels/fully_connected_test.cc
tensorflow/lite/micro/kernels/fully_connected_test.cc \
tensorflow/lite/micro/kernels/detection_postprocess_test.cc
MICROLITE_TEST_SRCS := $(filter-out $(EXCLUDED_TESTS), $(MICROLITE_TEST_SRCS))
EXCLUDED_EXAMPLE_TESTS := \