Introduces TrainSpec and EvalSpec.

PiperOrigin-RevId: 168040435
This commit is contained in:
Jianwei Xie 2017-09-08 13:46:53 -07:00 committed by TensorFlower Gardener
parent c8b9e92f07
commit 86f1713e51
3 changed files with 334 additions and 0 deletions

View File

@ -22,6 +22,7 @@ py_library(
":model_fn",
":parsing_utils",
":run_config",
":training",
"//tensorflow/python:util",
],
)
@ -70,6 +71,27 @@ py_test(
],
)
py_library(
name = "training",
srcs = ["training.py"],
srcs_version = "PY2AND3",
deps = [
"//tensorflow/python:training",
"@six_archive//:six",
],
)
py_test(
name = "training_test",
size = "small",
srcs = ["training_test.py"],
srcs_version = "PY2AND3",
deps = [
":training",
"//tensorflow/python:client_testlib",
],
)
py_library(
name = "run_config",
srcs = ["run_config.py"],

View File

@ -0,0 +1,179 @@
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Classes and functions related to train_and_evaluate."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import six
from tensorflow.python.training import session_run_hook
def _validate_input_fn(input_fn):
"""Validates the `input_fn`."""
if not callable(input_fn):
raise TypeError(
'`input_fn` must be callable, given: {}'.format(input_fn))
def _validate_hooks(hooks):
"""Validates the `hooks`."""
hooks = tuple(hooks or [])
for hook in hooks:
if not isinstance(hook, session_run_hook.SessionRunHook):
raise TypeError(
'All hooks must be `SessionRunHook` instances, given: {}'.format(
hook))
return hooks
class TrainSpec(
collections.namedtuple('TrainSpec', ['input_fn', 'max_steps', 'hooks'])):
"""Objects passed to `train_and_evaluate`.
`TrainSpec` fully defines the objects to be run by `Estimator.train`.
"""
def __new__(cls,
input_fn,
max_steps=None,
hooks=None):
"""Creates a validated `TrainSpec` instance.
Args:
input_fn: Training input function returning a tuple of:
features - `Tensor` or dictionary of string feature name to `Tensor`.
labels - `Tensor` or dictionary of `Tensor` with labels.
max_steps: Int. Number of total steps for which to train model. If `None`,
train forever or train until `input_fn` generates the `OutOfRange` error
or `StopIteration` exception. See `Estimator.train` for details.
hooks: Iterable of `tf.train.SessionRunHook` objects to run
on all workers (including chief) during training.
Returns:
A validated `TrainSpec` object.
Raises:
ValueError: If validation fails.
TypeError: If any of the arguments is not the expected type.
"""
# Validate input_fn.
_validate_input_fn(input_fn)
# Validate max_steps.
if max_steps is not None and max_steps <= 0:
raise ValueError(
'Must specify max_steps > 0, given: {}'.format(max_steps))
# Validate hooks.
hooks = _validate_hooks(hooks)
return super(TrainSpec, cls).__new__(
cls,
input_fn=input_fn,
max_steps=max_steps,
hooks=hooks)
class EvalSpec(
collections.namedtuple('EvalSpec', [
'input_fn', 'steps', 'name', 'hooks', 'export_strategies',
'delay_secs', 'throttle_secs'
])):
"""Objects passed to `train_and_evaluate`.
`EvalSpec` fully defines the objects to be run by `Estimator.evaluate` and
`Estimator.export_savedmodel`.
"""
def __new__(cls,
input_fn,
steps=100,
name=None,
hooks=None,
export_strategies=None,
delay_secs=120,
throttle_secs=60):
"""Creates a validated `EvalSpec` instance.
Args:
input_fn: Training input function returning a tuple of:
features - `Tensor` or dictionary of string feature name to `Tensor`.
labels - `Tensor` or dictionary of `Tensor` with labels.
steps: Int. Number of total steps for which to train model. If `None`,
train forever or train until `input_fn` generates the `OutOfRange` error
or `StopIteration` exception. See `Estimator.train` for details.
name: String. Name of the evaluation if user needs to run multiple
evaluations on different data sets. Metrics for different evaluations
are saved in separate folders, and appear separately in tensorboard.
hooks: Iterable of `tf.train.SessionRunHook` objects to run
on all workers (including chief) during training.
export_strategies: Iterable of `ExportStrategy`s, or a single one, or
`None`. `export_strategies` will be invoked after each evaluation.
delay_secs: Int. Start evaluating after waiting for this many seconds.
throttle_secs: Int. Do not re-evaluate unless the last evaluation was
started at least this many seconds ago. Of course, evaluation does not
occur if no new checkpoint is available, hence, this is the minimum.
Returns:
A validated `TrainSpec` object.
Raises:
ValueError: If validation fails.
TypeError: If any of the arguments is not the expected type.
"""
# Validate input_fn.
_validate_input_fn(input_fn)
# Validate steps.
if steps is not None and steps <= 0:
raise ValueError('Must specify steps > 0, given: {}'.format(steps))
# Validate name.
if name is not None and not isinstance(name, six.string_types):
raise TypeError('`name` must be string, given: {}'.format(name))
# Validate hooks.
hooks = _validate_hooks(hooks)
# Validate export_strategies.
export_strategies = tuple(export_strategies or [])
# TODO(b/65169058): Validate export_strategies once `ExportStratey` defined.
# Validate delay_secs.
if delay_secs < 0:
raise ValueError(
'Must specify delay_secs >= 0, given: {}'.format(delay_secs))
# Validate throttle_secs.
if throttle_secs < 0:
raise ValueError(
'Must specify throttle_secs >= 0, given: {}'.format(throttle_secs))
return super(EvalSpec, cls).__new__(
cls,
input_fn=input_fn,
steps=steps,
name=name,
hooks=hooks,
export_strategies=export_strategies,
delay_secs=delay_secs,
throttle_secs=throttle_secs)

View File

@ -0,0 +1,133 @@
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for training.py."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.estimator import training
from tensorflow.python.platform import test
from tensorflow.python.training import session_run_hook
_DEFAULT_EVAL_STEPS = 100
_DEFAULT_EVAL_DELAY_SECS = 120
_DEFAULT_EVAL_THROTTLE_SECS = 60
_INVALID_INPUT_FN_MSG = '`input_fn` must be callable'
_INVALID_HOOK_MSG = 'All hooks must be `SessionRunHook` instances'
_INVALID_MAX_STEPS_MSG = 'Must specify max_steps > 0'
_INVALID_STEPS_MSG = 'Must specify steps > 0'
_INVALID_NAME_MSG = '`name` must be string'
_INVALID_EVAL_DELAY_SECS_MSG = 'Must specify delay_secs >= 0'
_INVALID_EVAL_THROTTLE_SECS_MSG = 'Must specify throttle_secs >= 0'
class _FakeHook(session_run_hook.SessionRunHook):
"""Fake implementation of `SessionRunHook`."""
class _InvalidHook(object):
"""Invalid hook (not a subclass of `SessionRunHook`)."""
class TrainSpecTest(test.TestCase):
"""Tests TrainSpec."""
def testRequiredArgumentsSet(self):
"""Tests that no errors are raised when all required arguments are set."""
spec = training.TrainSpec(input_fn=lambda: 1)
self.assertEqual(1, spec.input_fn())
self.assertIsNone(spec.max_steps)
self.assertEqual(0, len(spec.hooks))
def testAllArgumentsSet(self):
"""Tests that no errors are raised when all arguments are set."""
hooks = [_FakeHook()]
spec = training.TrainSpec(input_fn=lambda: 1, max_steps=2, hooks=hooks)
self.assertEqual(1, spec.input_fn())
self.assertEqual(2, spec.max_steps)
self.assertEqual(tuple(hooks), spec.hooks)
def testInvalidInputFn(self):
with self.assertRaisesRegexp(TypeError, _INVALID_INPUT_FN_MSG):
training.TrainSpec(input_fn='invalid')
def testInvalidMaxStep(self):
with self.assertRaisesRegexp(ValueError, _INVALID_MAX_STEPS_MSG):
training.TrainSpec(input_fn=lambda: 1, max_steps=0)
def testInvalidHook(self):
with self.assertRaisesRegexp(TypeError, _INVALID_HOOK_MSG):
training.TrainSpec(input_fn=lambda: 1, hooks=[_InvalidHook()])
class EvalSpecTest(test.TestCase):
"""Tests EvalSpec."""
def testRequiredArgumentsSet(self):
"""Tests that no errors are raised when all required arguments are set."""
spec = training.EvalSpec(input_fn=lambda: 1)
self.assertEqual(1, spec.input_fn())
self.assertEqual(_DEFAULT_EVAL_STEPS, spec.steps)
self.assertIsNone(spec.name)
self.assertEqual(0, len(spec.hooks))
self.assertEqual(0, len(spec.export_strategies))
self.assertEqual(_DEFAULT_EVAL_DELAY_SECS, spec.delay_secs)
self.assertEqual(_DEFAULT_EVAL_THROTTLE_SECS, spec.throttle_secs)
def testAllArgumentsSet(self):
"""Tests that no errors are raised when all arguments are set."""
hooks = [_FakeHook()]
# TODO(b/65169058): Replace the export_strategies with valid instances.
spec = training.EvalSpec(input_fn=lambda: 1, steps=2, name='name',
hooks=hooks, export_strategies=hooks,
delay_secs=3, throttle_secs=4)
self.assertEqual(1, spec.input_fn())
self.assertEqual(2, spec.steps)
self.assertEqual('name', spec.name)
self.assertEqual(tuple(hooks), spec.hooks)
self.assertEqual(tuple(hooks), spec.export_strategies)
self.assertEqual(3, spec.delay_secs)
self.assertEqual(4, spec.throttle_secs)
def testInvalidInputFn(self):
with self.assertRaisesRegexp(TypeError, _INVALID_INPUT_FN_MSG):
training.EvalSpec(input_fn='invalid')
def testInvalidMaxStep(self):
with self.assertRaisesRegexp(ValueError, _INVALID_STEPS_MSG):
training.EvalSpec(input_fn=lambda: 1, steps=0)
def testInvalidName(self):
with self.assertRaisesRegexp(TypeError, _INVALID_NAME_MSG):
training.EvalSpec(input_fn=lambda: 1, name=123)
def testInvalidHook(self):
with self.assertRaisesRegexp(TypeError, _INVALID_HOOK_MSG):
training.EvalSpec(input_fn=lambda: 1, hooks=[_InvalidHook()])
def testInvalidDelaySecs(self):
with self.assertRaisesRegexp(ValueError, _INVALID_EVAL_DELAY_SECS_MSG):
training.EvalSpec(input_fn=lambda: 1, delay_secs=-1)
def testInvalidThrottleSecs(self):
with self.assertRaisesRegexp(ValueError, _INVALID_EVAL_THROTTLE_SECS_MSG):
training.EvalSpec(input_fn=lambda: 1, throttle_secs=-1)
if __name__ == '__main__':
test.main()