Rollback the previous change of feature_column test.

PiperOrigin-RevId: 314933875
Change-Id: Ib83c967083a2a26e02e1b38ae6baa205204f4a97
This commit is contained in:
Scott Zhu 2020-06-05 08:40:40 -07:00 committed by TensorFlower Gardener
parent 6a4711835a
commit 86e649bf6f
8 changed files with 221 additions and 285 deletions

View File

@ -23,6 +23,7 @@ py_library(
srcs_version = "PY2AND3", srcs_version = "PY2AND3",
deps = [ deps = [
":utils", ":utils",
"@six_archive//:six",
"//tensorflow/python:array_ops", "//tensorflow/python:array_ops",
"//tensorflow/python:check_ops", "//tensorflow/python:check_ops",
"//tensorflow/python:control_flow_ops", "//tensorflow/python:control_flow_ops",
@ -48,7 +49,13 @@ py_library(
"//tensorflow/python:variables", "//tensorflow/python:variables",
"//tensorflow/python/eager:context", "//tensorflow/python/eager:context",
"//tensorflow/python/keras/engine", "//tensorflow/python/keras/engine",
"@six_archive//:six", # TODO(scottzhu): Remove metrics after we cleanup the keras internal cyclar dependency.
# //third_party/tensorflow/python/feature_column:feature_column
# //third_party/tensorflow/python/keras/engine:engine
# .-> //third_party/tensorflow/python/keras/distribute:distribute
# | //third_party/tensorflow/python/keras:metrics
# `-- //third_party/tensorflow/python/keras/distribute:distribute
"//tensorflow/python/keras:metrics",
], ],
) )
@ -72,7 +79,6 @@ py_library(
"//tensorflow/python:init_ops", "//tensorflow/python:init_ops",
"//tensorflow/python:lookup_ops", "//tensorflow/python:lookup_ops",
"//tensorflow/python:math_ops", "//tensorflow/python:math_ops",
"//tensorflow/python:nn_ops",
"//tensorflow/python:parsing_ops", "//tensorflow/python:parsing_ops",
"//tensorflow/python:platform", "//tensorflow/python:platform",
"//tensorflow/python:sparse_ops", "//tensorflow/python:sparse_ops",
@ -85,11 +91,7 @@ py_library(
"//tensorflow/python:variable_scope", "//tensorflow/python:variable_scope",
"//tensorflow/python:variables", "//tensorflow/python:variables",
"//tensorflow/python/eager:context", "//tensorflow/python/eager:context",
"//tensorflow/python/keras:backend",
"//tensorflow/python/keras:initializers", "//tensorflow/python/keras:initializers",
"//tensorflow/python/keras/engine",
"//tensorflow/python/keras/engine:base_layer",
"//tensorflow/python/keras/layers",
"//tensorflow/python/keras/utils:generic_utils", "//tensorflow/python/keras/utils:generic_utils",
"//tensorflow/python/training/tracking", "//tensorflow/python/training/tracking",
"//tensorflow/python/training/tracking:data_structures", "//tensorflow/python/training/tracking:data_structures",
@ -236,11 +238,8 @@ py_test(
deps = [ deps = [
":feature_column_v2", ":feature_column_v2",
"//tensorflow/python:client_testlib", "//tensorflow/python:client_testlib",
"//tensorflow/python:framework_ops",
"//tensorflow/python:parsing_ops", "//tensorflow/python:parsing_ops",
"//tensorflow/python:training",
"//tensorflow/python:util", "//tensorflow/python:util",
"//tensorflow/python/keras/layers",
], ],
) )
@ -254,37 +253,3 @@ tf_py_test(
"@absl_py//absl/testing:parameterized", "@absl_py//absl/testing:parameterized",
], ],
) )
tf_py_test(
name = "keras_integration_test",
size = "medium",
srcs = ["keras_integration_test.py"],
python_version = "PY3",
shard_count = 4,
tags = [
"nomac", # TODO(mihaimaruseac): b/127695564
"notsan",
],
deps = [
":feature_column_py",
"//tensorflow/python:client_testlib",
"//tensorflow/python/keras",
"//third_party/py/numpy",
"@absl_py//absl/testing:parameterized",
],
)
tf_py_test(
name = "save_test",
size = "medium",
srcs = ["save_test.py"],
python_version = "PY3",
deps = [
":feature_column_v2",
"//tensorflow/python:client_testlib",
"//tensorflow/python/keras",
"//tensorflow/python/keras:combinations",
"//third_party/py/numpy",
"@absl_py//absl/testing:parameterized",
],
)

View File

@ -1,133 +0,0 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Keras model saving code."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.python import keras
from tensorflow.python.eager import context
from tensorflow.python.feature_column import feature_column_lib
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.keras import combinations
from tensorflow.python.keras.saving import model_config
from tensorflow.python.ops import lookup_ops
from tensorflow.python.platform import test
class TestSaveModel(test.TestCase, parameterized.TestCase):
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
def test_saving_with_dense_features(self):
cols = [
feature_column_lib.numeric_column('a'),
feature_column_lib.indicator_column(
feature_column_lib.categorical_column_with_vocabulary_list(
'b', ['one', 'two']))
]
input_layers = {
'a': keras.layers.Input(shape=(1,), name='a'),
'b': keras.layers.Input(shape=(1,), name='b', dtype='string')
}
fc_layer = feature_column_lib.DenseFeatures(cols)(input_layers)
output = keras.layers.Dense(10)(fc_layer)
model = keras.models.Model(input_layers, output)
model.compile(
loss=keras.losses.MSE,
optimizer='rmsprop',
metrics=[keras.metrics.categorical_accuracy])
config = model.to_json()
loaded_model = model_config.model_from_json(config)
inputs_a = np.arange(10).reshape(10, 1)
inputs_b = np.arange(10).reshape(10, 1).astype('str')
with self.cached_session():
# Initialize tables for V1 lookup.
if not context.executing_eagerly():
self.evaluate(lookup_ops.tables_initializer())
self.assertLen(loaded_model.predict({'a': inputs_a, 'b': inputs_b}), 10)
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
def test_saving_with_sequence_features(self):
cols = [
feature_column_lib.sequence_numeric_column('a'),
feature_column_lib.indicator_column(
feature_column_lib.sequence_categorical_column_with_vocabulary_list(
'b', ['one', 'two']))
]
input_layers = {
'a':
keras.layers.Input(shape=(None, 1), sparse=True, name='a'),
'b':
keras.layers.Input(
shape=(None, 1), sparse=True, name='b', dtype='string')
}
fc_layer, _ = feature_column_lib.SequenceFeatures(cols)(input_layers)
# TODO(tibell): Figure out the right dtype and apply masking.
# sequence_length_mask = array_ops.sequence_mask(sequence_length)
# x = keras.layers.GRU(32)(fc_layer, mask=sequence_length_mask)
x = keras.layers.GRU(32)(fc_layer)
output = keras.layers.Dense(10)(x)
model = keras.models.Model(input_layers, output)
model.compile(
loss=keras.losses.MSE,
optimizer='rmsprop',
metrics=[keras.metrics.categorical_accuracy])
config = model.to_json()
loaded_model = model_config.model_from_json(config)
batch_size = 10
timesteps = 1
values_a = np.arange(10, dtype=np.float32)
indices_a = np.zeros((10, 3), dtype=np.int64)
indices_a[:, 0] = np.arange(10)
inputs_a = sparse_tensor.SparseTensor(indices_a, values_a,
(batch_size, timesteps, 1))
values_b = np.zeros(10, dtype=np.str)
indices_b = np.zeros((10, 3), dtype=np.int64)
indices_b[:, 0] = np.arange(10)
inputs_b = sparse_tensor.SparseTensor(indices_b, values_b,
(batch_size, timesteps, 1))
with self.cached_session():
# Initialize tables for V1 lookup.
if not context.executing_eagerly():
self.evaluate(lookup_ops.tables_initializer())
self.assertLen(
loaded_model.predict({
'a': inputs_a,
'b': inputs_b
}, steps=1), batch_size)
if __name__ == '__main__':
test.main()

View File

@ -426,6 +426,24 @@ tf_py_test(
], ],
) )
tf_py_test(
name = "feature_columns_integration_test",
size = "medium",
srcs = ["feature_columns_integration_test.py"],
python_version = "PY3",
tags = [
"nomac", # TODO(mihaimaruseac): b/127695564
"notsan",
],
deps = [
"//tensorflow/python:client_testlib",
"//tensorflow/python/feature_column:feature_column_py",
"//tensorflow/python/keras",
"//third_party/py/numpy",
"@absl_py//absl/testing:parameterized",
],
)
tf_py_test( tf_py_test(
name = "training_eager_test", name = "training_eager_test",
size = "medium", size = "medium",

View File

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================== # ==============================================================================
"""Tests specific to Feature Columns and Keras integration.""" """Tests specific to Feature Columns integration."""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
@ -21,17 +21,11 @@ from __future__ import print_function
import numpy as np import numpy as np
from tensorflow.python import keras from tensorflow.python import keras
from tensorflow.python import tf2
from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.feature_column import feature_column_lib as fc from tensorflow.python.feature_column import feature_column_lib as fc
from tensorflow.python.feature_column import feature_column_v2
from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import metrics as metrics_module from tensorflow.python.keras import metrics as metrics_module
from tensorflow.python.keras import testing_utils from tensorflow.python.keras import testing_utils
from tensorflow.python.keras.feature_column import dense_features_v2
from tensorflow.python.keras.optimizer_v2 import gradient_descent
from tensorflow.python.keras.premade import linear
from tensorflow.python.keras.premade import wide_deep
from tensorflow.python.keras.utils import np_utils from tensorflow.python.keras.utils import np_utils
from tensorflow.python.platform import test from tensorflow.python.platform import test
@ -304,108 +298,6 @@ class FeatureColumnsIntegrationTest(keras_parameterized.TestCase):
loss=keras.losses.BinaryCrossentropy()) loss=keras.losses.BinaryCrossentropy())
model.fit(dataset) model.fit(dataset)
def test_serialization_dense_features(self):
dense_feature = fc.DenseFeatures([fc.numeric_column('a')])
config = keras.layers.serialize(dense_feature)
self.assertEqual(config['class_name'], 'DenseFeatures')
revived = keras.layers.deserialize(config)
if tf2.enabled():
self.assertIsInstance(revived, dense_features_v2.DenseFeatures)
else:
self.assertIsInstance(revived, fc.DenseFeatures)
self.assertNotIsInstance(revived, dense_features_v2.DenseFeatures)
# This test is an example for a regression on categorical inputs, i.e.,
# the output is 0.4, 0.6, 0.9 when input is 'alpha', 'beta', 'gamma'
# separately.
@keras_parameterized.run_all_keras_modes(always_skip_v1=True)
def test_linear_model_with_feature_column(self):
vocab_list = ['alpha', 'beta', 'gamma']
vocab_val = [0.4, 0.6, 0.9]
data = np.random.choice(vocab_list, size=256)
y = np.zeros_like(data, dtype=np.float32)
for vocab, val in zip(vocab_list, vocab_val):
indices = np.where(data == vocab)
y[indices] = val + np.random.uniform(
low=-0.01, high=0.01, size=indices[0].shape)
cat_column = feature_column_v2.categorical_column_with_vocabulary_list(
key='symbol', vocabulary_list=vocab_list)
ind_column = feature_column_v2.indicator_column(cat_column)
dense_feature_layer = dense_features_v2.DenseFeatures([ind_column])
linear_model = linear.LinearModel(
use_bias=False, kernel_initializer='zeros')
combined = keras.Sequential([dense_feature_layer, linear_model])
opt = gradient_descent.SGD(learning_rate=0.1)
combined.compile(opt, 'mse', [])
combined.fit(x={'symbol': data}, y=y, batch_size=32, epochs=10)
self.assertAllClose([[0.4], [0.6], [0.9]],
combined.layers[1].dense_layers[0].kernel.numpy(),
atol=0.01)
# This test is an example for cases where linear and dnn model accepts
# same raw input and same transformed inputs, i.e., the raw input is
# categorical, and both linear and dnn model accept one hot encoding.
@keras_parameterized.run_all_keras_modes(always_skip_v1=True)
def test_wide_deep_model_with_single_feature_column(self):
vocab_list = ['alpha', 'beta', 'gamma']
vocab_val = [0.4, 0.6, 0.9]
data = np.random.choice(vocab_list, size=256)
y = np.zeros_like(data, dtype=np.float32)
for vocab, val in zip(vocab_list, vocab_val):
indices = np.where(data == vocab)
y[indices] = val + np.random.uniform(
low=-0.01, high=0.01, size=indices[0].shape)
cat_column = feature_column_v2.categorical_column_with_vocabulary_list(
key='symbol', vocabulary_list=vocab_list)
ind_column = feature_column_v2.indicator_column(cat_column)
dense_feature_layer = dense_features_v2.DenseFeatures([ind_column])
linear_model = linear.LinearModel(
use_bias=False, kernel_initializer='zeros')
dnn_model = keras.Sequential([keras.layers.Dense(units=1)])
wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
combined = keras.Sequential([dense_feature_layer, wide_deep_model])
opt = gradient_descent.SGD(learning_rate=0.1)
combined.compile(
opt,
'mse', [],
run_eagerly=testing_utils.should_run_eagerly())
combined.fit(x={'symbol': data}, y=y, batch_size=32, epochs=10)
# This test is an example for cases where linear and dnn model accepts
# same raw input but different transformed inputs, i.e,. the raw input is
# categorical, and linear model accepts one hot encoding, while dnn model
# accepts embedding encoding.
@keras_parameterized.run_all_keras_modes(always_skip_v1=True)
def test_wide_deep_model_with_two_feature_columns(self):
vocab_list = ['alpha', 'beta', 'gamma']
vocab_val = [0.4, 0.6, 0.9]
data = np.random.choice(vocab_list, size=256)
y = np.zeros_like(data, dtype=np.float32)
for vocab, val in zip(vocab_list, vocab_val):
indices = np.where(data == vocab)
y[indices] = val + np.random.uniform(
low=-0.01, high=0.01, size=indices[0].shape)
cat_column = feature_column_v2.categorical_column_with_vocabulary_list(
key='symbol', vocabulary_list=vocab_list)
ind_column = feature_column_v2.indicator_column(cat_column)
emb_column = feature_column_v2.embedding_column(cat_column, dimension=5)
linear_feature_layer = dense_features_v2.DenseFeatures([ind_column])
linear_model = linear.LinearModel(
use_bias=False, kernel_initializer='zeros')
combined_linear = keras.Sequential(
[linear_feature_layer, linear_model])
dnn_model = keras.Sequential([keras.layers.Dense(units=1)])
dnn_feature_layer = dense_features_v2.DenseFeatures([emb_column])
combined_dnn = keras.Sequential([dnn_feature_layer, dnn_model])
wide_deep_model = wide_deep.WideDeepModel(combined_linear, combined_dnn)
opt = gradient_descent.SGD(learning_rate=0.1)
wide_deep_model.compile(
opt,
'mse', [],
run_eagerly=testing_utils.should_run_eagerly())
wide_deep_model.fit(x={'symbol': data}, y=y, batch_size=32, epochs=10)
if __name__ == '__main__': if __name__ == '__main__':
test.main() test.main()

View File

@ -22,6 +22,7 @@ import numpy as np
from tensorflow.python.eager import backprop from tensorflow.python.eager import backprop
from tensorflow.python.eager import context from tensorflow.python.eager import context
from tensorflow.python.feature_column import feature_column_v2 as fc
from tensorflow.python.framework import constant_op from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes from tensorflow.python.framework import dtypes
from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import sparse_tensor
@ -29,7 +30,9 @@ from tensorflow.python.keras import backend
from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import losses from tensorflow.python.keras import losses
from tensorflow.python.keras.engine import input_layer from tensorflow.python.keras.engine import input_layer
from tensorflow.python.keras.engine import sequential
from tensorflow.python.keras.engine import training from tensorflow.python.keras.engine import training
from tensorflow.python.keras.feature_column import dense_features_v2
from tensorflow.python.keras.layers import core from tensorflow.python.keras.layers import core
from tensorflow.python.keras.optimizer_v2 import gradient_descent from tensorflow.python.keras.optimizer_v2 import gradient_descent
from tensorflow.python.keras.premade import linear from tensorflow.python.keras.premade import linear
@ -126,6 +129,33 @@ class LinearModelTest(keras_parameterized.TestCase):
grads_and_vars = zip(grads, model.trainable_variables) grads_and_vars = zip(grads, model.trainable_variables)
opt.apply_gradients(grads_and_vars) opt.apply_gradients(grads_and_vars)
# This test is an example for a regression on categorical inputs, i.e.,
# the output is 0.4, 0.6, 0.9 when input is 'alpha', 'beta', 'gamma'
# separately.
def test_linear_model_with_feature_column(self):
with context.eager_mode():
vocab_list = ['alpha', 'beta', 'gamma']
vocab_val = [0.4, 0.6, 0.9]
data = np.random.choice(vocab_list, size=256)
y = np.zeros_like(data, dtype=np.float32)
for vocab, val in zip(vocab_list, vocab_val):
indices = np.where(data == vocab)
y[indices] = val + np.random.uniform(
low=-0.01, high=0.01, size=indices[0].shape)
cat_column = fc.categorical_column_with_vocabulary_list(
key='symbol', vocabulary_list=vocab_list)
ind_column = fc.indicator_column(cat_column)
dense_feature_layer = dense_features_v2.DenseFeatures([ind_column])
linear_model = linear.LinearModel(
use_bias=False, kernel_initializer='zeros')
combined = sequential.Sequential([dense_feature_layer, linear_model])
opt = gradient_descent.SGD(learning_rate=0.1)
combined.compile(opt, 'mse', [])
combined.fit(x={'symbol': data}, y=y, batch_size=32, epochs=10)
self.assertAllClose([[0.4], [0.6], [0.9]],
combined.layers[1].dense_layers[0].kernel.numpy(),
atol=0.01)
def test_config(self): def test_config(self):
linear_model = linear.LinearModel(units=3, use_bias=True) linear_model = linear.LinearModel(units=3, use_bias=True)
config = linear_model.get_config() config = linear_model.get_config()

View File

@ -21,11 +21,13 @@ from __future__ import print_function
import numpy as np import numpy as np
from tensorflow.python.eager import context from tensorflow.python.eager import context
from tensorflow.python.feature_column import feature_column_v2 as fc
from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import testing_utils from tensorflow.python.keras import testing_utils
from tensorflow.python.keras.engine import input_layer from tensorflow.python.keras.engine import input_layer
from tensorflow.python.keras.engine import sequential from tensorflow.python.keras.engine import sequential
from tensorflow.python.keras.engine import training from tensorflow.python.keras.engine import training
from tensorflow.python.keras.feature_column import dense_features_v2
from tensorflow.python.keras.layers import core from tensorflow.python.keras.layers import core
from tensorflow.python.keras.optimizer_v2 import gradient_descent from tensorflow.python.keras.optimizer_v2 import gradient_descent
from tensorflow.python.keras.premade import linear from tensorflow.python.keras.premade import linear
@ -186,6 +188,67 @@ class WideDeepModelTest(keras_parameterized.TestCase):
run_eagerly=testing_utils.should_run_eagerly()) run_eagerly=testing_utils.should_run_eagerly())
wide_deep_model.fit(inputs, output, epochs=50) wide_deep_model.fit(inputs, output, epochs=50)
# This test is an example for cases where linear and dnn model accepts
# same raw input and same transformed inputs, i.e., the raw input is
# categorical, and both linear and dnn model accept one hot encoding.
def test_wide_deep_model_with_single_feature_column(self):
vocab_list = ['alpha', 'beta', 'gamma']
vocab_val = [0.4, 0.6, 0.9]
data = np.random.choice(vocab_list, size=256)
y = np.zeros_like(data, dtype=np.float32)
for vocab, val in zip(vocab_list, vocab_val):
indices = np.where(data == vocab)
y[indices] = val + np.random.uniform(
low=-0.01, high=0.01, size=indices[0].shape)
cat_column = fc.categorical_column_with_vocabulary_list(
key='symbol', vocabulary_list=vocab_list)
ind_column = fc.indicator_column(cat_column)
dense_feature_layer = dense_features_v2.DenseFeatures([ind_column])
linear_model = linear.LinearModel(
use_bias=False, kernel_initializer='zeros')
dnn_model = sequential.Sequential([core.Dense(units=1)])
wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
combined = sequential.Sequential([dense_feature_layer, wide_deep_model])
opt = gradient_descent.SGD(learning_rate=0.1)
combined.compile(
opt,
'mse', [],
run_eagerly=testing_utils.should_run_eagerly())
combined.fit(x={'symbol': data}, y=y, batch_size=32, epochs=10)
# This test is an example for cases where linear and dnn model accepts
# same raw input but different transformed inputs, i.e,. the raw input is
# categorical, and linear model accepts one hot encoding, while dnn model
# accepts embedding encoding.
def test_wide_deep_model_with_two_feature_columns(self):
vocab_list = ['alpha', 'beta', 'gamma']
vocab_val = [0.4, 0.6, 0.9]
data = np.random.choice(vocab_list, size=256)
y = np.zeros_like(data, dtype=np.float32)
for vocab, val in zip(vocab_list, vocab_val):
indices = np.where(data == vocab)
y[indices] = val + np.random.uniform(
low=-0.01, high=0.01, size=indices[0].shape)
cat_column = fc.categorical_column_with_vocabulary_list(
key='symbol', vocabulary_list=vocab_list)
ind_column = fc.indicator_column(cat_column)
emb_column = fc.embedding_column(cat_column, dimension=5)
linear_feature_layer = dense_features_v2.DenseFeatures([ind_column])
linear_model = linear.LinearModel(
use_bias=False, kernel_initializer='zeros')
combined_linear = sequential.Sequential(
[linear_feature_layer, linear_model])
dnn_model = sequential.Sequential([core.Dense(units=1)])
dnn_feature_layer = dense_features_v2.DenseFeatures([emb_column])
combined_dnn = sequential.Sequential([dnn_feature_layer, dnn_model])
wide_deep_model = wide_deep.WideDeepModel(combined_linear, combined_dnn)
opt = gradient_descent.SGD(learning_rate=0.1)
wide_deep_model.compile(
opt,
'mse', [],
run_eagerly=testing_utils.should_run_eagerly())
wide_deep_model.fit(x={'symbol': data}, y=y, batch_size=32, epochs=10)
def test_config(self): def test_config(self):
linear_model = linear.LinearModel(units=1) linear_model = linear.LinearModel(units=1)
dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])

View File

@ -109,6 +109,7 @@ tf_py_test(
python_version = "PY3", python_version = "PY3",
deps = [ deps = [
"//tensorflow/python:client_testlib", "//tensorflow/python:client_testlib",
"//tensorflow/python/feature_column:feature_column_v2",
"//tensorflow/python/keras", "//tensorflow/python/keras",
"//tensorflow/python/keras:combinations", "//tensorflow/python/keras:combinations",
"//third_party/py/numpy", "//third_party/py/numpy",

View File

@ -25,14 +25,19 @@ from absl.testing import parameterized
import numpy as np import numpy as np
from tensorflow.python import keras from tensorflow.python import keras
from tensorflow.python.eager import context
from tensorflow.python.feature_column import feature_column_lib
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import test_util from tensorflow.python.framework import test_util
from tensorflow.python.keras import combinations from tensorflow.python.keras import combinations
from tensorflow.python.keras import losses from tensorflow.python.keras import losses
from tensorflow.python.keras import testing_utils from tensorflow.python.keras import testing_utils
from tensorflow.python.keras.engine import sequential from tensorflow.python.keras.engine import sequential
from tensorflow.python.keras.layers import core from tensorflow.python.keras.layers import core
from tensorflow.python.keras.saving import model_config
from tensorflow.python.keras.saving import save from tensorflow.python.keras.saving import save
from tensorflow.python.keras.utils import generic_utils from tensorflow.python.keras.utils import generic_utils
from tensorflow.python.ops import lookup_ops
from tensorflow.python.platform import test from tensorflow.python.platform import test
from tensorflow.python.saved_model import loader_impl from tensorflow.python.saved_model import loader_impl
@ -100,6 +105,101 @@ class TestSaveModel(test.TestCase, parameterized.TestCase):
save.save_model(self.model, path, save_format='tf') save.save_model(self.model, path, save_format='tf')
save.load_model(path) save.load_model(path)
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
def test_saving_with_dense_features(self):
cols = [
feature_column_lib.numeric_column('a'),
feature_column_lib.indicator_column(
feature_column_lib.categorical_column_with_vocabulary_list(
'b', ['one', 'two']))
]
input_layers = {
'a': keras.layers.Input(shape=(1,), name='a'),
'b': keras.layers.Input(shape=(1,), name='b', dtype='string')
}
fc_layer = feature_column_lib.DenseFeatures(cols)(input_layers)
output = keras.layers.Dense(10)(fc_layer)
model = keras.models.Model(input_layers, output)
model.compile(
loss=keras.losses.MSE,
optimizer='rmsprop',
metrics=[keras.metrics.categorical_accuracy])
config = model.to_json()
loaded_model = model_config.model_from_json(config)
inputs_a = np.arange(10).reshape(10, 1)
inputs_b = np.arange(10).reshape(10, 1).astype('str')
with self.cached_session():
# Initialize tables for V1 lookup.
if not context.executing_eagerly():
self.evaluate(lookup_ops.tables_initializer())
self.assertLen(loaded_model.predict({'a': inputs_a, 'b': inputs_b}), 10)
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
def test_saving_with_sequence_features(self):
cols = [
feature_column_lib.sequence_numeric_column('a'),
feature_column_lib.indicator_column(
feature_column_lib.sequence_categorical_column_with_vocabulary_list(
'b', ['one', 'two']))
]
input_layers = {
'a':
keras.layers.Input(shape=(None, 1), sparse=True, name='a'),
'b':
keras.layers.Input(
shape=(None, 1), sparse=True, name='b', dtype='string')
}
fc_layer, _ = feature_column_lib.SequenceFeatures(cols)(input_layers)
# TODO(tibell): Figure out the right dtype and apply masking.
# sequence_length_mask = array_ops.sequence_mask(sequence_length)
# x = keras.layers.GRU(32)(fc_layer, mask=sequence_length_mask)
x = keras.layers.GRU(32)(fc_layer)
output = keras.layers.Dense(10)(x)
model = keras.models.Model(input_layers, output)
model.compile(
loss=keras.losses.MSE,
optimizer='rmsprop',
metrics=[keras.metrics.categorical_accuracy])
config = model.to_json()
loaded_model = model_config.model_from_json(config)
batch_size = 10
timesteps = 1
values_a = np.arange(10, dtype=np.float32)
indices_a = np.zeros((10, 3), dtype=np.int64)
indices_a[:, 0] = np.arange(10)
inputs_a = sparse_tensor.SparseTensor(indices_a, values_a,
(batch_size, timesteps, 1))
values_b = np.zeros(10, dtype=np.str)
indices_b = np.zeros((10, 3), dtype=np.int64)
indices_b[:, 0] = np.arange(10)
inputs_b = sparse_tensor.SparseTensor(indices_b, values_b,
(batch_size, timesteps, 1))
with self.cached_session():
# Initialize tables for V1 lookup.
if not context.executing_eagerly():
self.evaluate(lookup_ops.tables_initializer())
self.assertLen(
loaded_model.predict({
'a': inputs_a,
'b': inputs_b
}, steps=1), batch_size)
@combinations.generate(combinations.combine(mode=['graph', 'eager'])) @combinations.generate(combinations.combine(mode=['graph', 'eager']))
def test_saving_h5_for_rnn_layers(self): def test_saving_h5_for_rnn_layers(self):
# See https://github.com/tensorflow/tensorflow/issues/35731 for details. # See https://github.com/tensorflow/tensorflow/issues/35731 for details.