Switch DirectSession to use _Arg and _Retval ops for feeding and fetching.

This change reduces the overhead imposed by string processing and
rendezvous invocation in the DirectSession::Run() call by 1--2 microseconds
per value fed or fetched.

RELNOTES: Improved DirectSession::Run() overhead and error checking. Feeding a value of the wrong type will now synchronously raise an INVALID_ARGUMENT error instead of asynchronously raising an INTERNAL error. Code that depends on the (undefined) behavior when feeding a tensor of the wrong type may need to be updated.
Change: 153797943
This commit is contained in:
Derek Murray 2017-04-20 22:22:29 -08:00 committed by TensorFlower Gardener
parent b0594e1b82
commit 858e0afcc4
16 changed files with 370 additions and 100 deletions

View File

@ -1563,6 +1563,7 @@ tf_cuda_library(
":lib_internal",
":proto_text",
":protos_all_cc",
"//tensorflow/core/kernels:function_ops",
],
alwayslink = 1,
)

View File

@ -30,6 +30,11 @@ struct BuildGraphOptions {
// the former via "ref" fetch_endpoints.
std::vector<string> target_nodes;
// If `true`, uses Arg/Retval to implement feeds/fetches; otherwise
// uses Recv/Send to implement feeds/fetches.
// TODO(mrry): Remove this when the distributed runtime supports Arg/Retval.
bool use_function_convention = false;
string DebugString() const;
};

View File

@ -361,7 +361,6 @@ Status DirectSession::ExtendLocked(const GraphDef& graph) {
return Status::OK();
}
// TODO(yuanbyu): Simplify by treating Run() as "PRunSetup(); PRun()".
Status DirectSession::Run(const NamedTensorList& inputs,
const std::vector<string>& output_names,
const std::vector<string>& target_nodes,
@ -426,13 +425,34 @@ Status DirectSession::Run(const RunOptions& run_options,
executor_step_count, input_tensor_names, output_names, target_nodes));
}
// Configure a call frame for the step, which we use to feed and
// fetch values to and from the executors.
FunctionCallFrame call_frame(executors_and_keys->input_types,
executors_and_keys->output_types);
gtl::InlinedVector<Tensor, 4> feed_args(inputs.size());
for (const auto& it : inputs) {
if (it.second.dtype() == DT_RESOURCE) {
Tensor tensor_from_handle;
TF_RETURN_IF_ERROR(
ResourceHandleToInputTensor(it.second, &tensor_from_handle));
feed_args[executors_and_keys->input_name_to_index[it.first]] =
tensor_from_handle;
} else {
feed_args[executors_and_keys->input_name_to_index[it.first]] = it.second;
}
}
Status s = call_frame.SetArgs(feed_args);
if (errors::IsInternal(s)) {
return errors::InvalidArgument(s.error_message());
} else if (!s.ok()) {
return s;
}
// Create a run state and start execution.
RunState run_state(args.step_id, &devices_);
run_state.rendez = new IntraProcessRendezvous(device_mgr_.get());
CancellationManager step_cancellation_manager;
// Send inputs.
TF_RETURN_IF_ERROR(SendInputs(inputs, executors_and_keys, run_state.rendez));
args.call_frame = &call_frame;
// Start parallel Executors.
const size_t num_executors = executors_and_keys->items.size();
@ -535,8 +555,22 @@ Status DirectSession::Run(const RunOptions& run_options,
}
// Receive outputs.
TF_RETURN_IF_ERROR(
RecvOutputs(output_names, executors_and_keys, &run_state, outputs));
if (outputs) {
std::vector<Tensor> sorted_outputs;
Status s = call_frame.ConsumeRetvals(&sorted_outputs);
if (errors::IsInternal(s)) {
return errors::InvalidArgument(s.error_message());
} else if (!s.ok()) {
return s;
}
outputs->clear();
outputs->reserve(sorted_outputs.size());
for (const string& output_name : output_names) {
outputs->emplace_back(
std::move(sorted_outputs[executors_and_keys
->output_name_to_index[output_name]]));
}
}
// Save the output tensors of this run we choose to keep.
TF_RETURN_IF_ERROR(
@ -706,11 +740,11 @@ Status DirectSession::PRun(const string& handle, const NamedTensorList& inputs,
CheckFetch(inputs, output_names, executors_and_keys, run_state));
// Send inputs.
Status s = SendInputs(inputs, executors_and_keys, run_state->rendez);
Status s = SendPRunInputs(inputs, executors_and_keys, run_state->rendez);
// Receive outputs.
if (s.ok()) {
s = RecvOutputs(output_names, executors_and_keys, run_state, outputs);
s = RecvPRunOutputs(output_names, executors_and_keys, run_state, outputs);
}
// Save the output tensors of this run we choose to keep.
@ -770,16 +804,17 @@ Status DirectSession::ResourceHandleToInputTensor(const Tensor& resource_tensor,
}
}
Status DirectSession::SendInputs(const NamedTensorList& inputs,
const ExecutorsAndKeys* executors_and_keys,
IntraProcessRendezvous* rendez) {
Status DirectSession::SendPRunInputs(const NamedTensorList& inputs,
const ExecutorsAndKeys* executors_and_keys,
IntraProcessRendezvous* rendez) {
Status s;
Rendezvous::ParsedKey parsed;
// Insert the input tensors into the local rendezvous by their
// rendezvous key.
for (const auto& input : inputs) {
auto it = executors_and_keys->input_keys.find(input.first);
if (it == executors_and_keys->input_keys.end()) {
auto it =
executors_and_keys->input_name_to_rendezvous_key.find(input.first);
if (it == executors_and_keys->input_name_to_rendezvous_key.end()) {
return errors::Internal("'", input.first, "' is not a pre-defined feed.");
}
const string& input_key = it->second;
@ -808,10 +843,10 @@ Status DirectSession::SendInputs(const NamedTensorList& inputs,
return Status::OK();
}
Status DirectSession::RecvOutputs(const std::vector<string>& output_names,
const ExecutorsAndKeys* executors_and_keys,
RunState* run_state,
std::vector<Tensor>* outputs) {
Status DirectSession::RecvPRunOutputs(
const std::vector<string>& output_names,
const ExecutorsAndKeys* executors_and_keys, RunState* run_state,
std::vector<Tensor>* outputs) {
Status s;
if (!output_names.empty()) {
outputs->resize(output_names.size());
@ -822,8 +857,9 @@ Status DirectSession::RecvOutputs(const std::vector<string>& output_names,
for (size_t output_offset = 0; output_offset < output_names.size();
++output_offset) {
const string& output_name = output_names[output_offset];
auto it = executors_and_keys->output_keys.find(output_name);
if (it == executors_and_keys->output_keys.end()) {
auto it =
executors_and_keys->output_name_to_rendezvous_key.find(output_name);
if (it == executors_and_keys->output_name_to_rendezvous_key.end()) {
return errors::Internal("'", output_name,
"' is not a pre-defined fetch.");
}
@ -987,14 +1023,16 @@ Status DirectSession::GetOrCreateExecutors(
options.feed_endpoints = inputs_sorted;
options.fetch_endpoints = outputs_sorted;
options.target_nodes = tn_sorted;
options.use_function_convention = !run_state_args->is_partial_run;
std::shared_ptr<ExecutorsAndKeys> ek(new ExecutorsAndKeys);
// The executor_lock_ is intentionally released while executor is
// being created.
std::unordered_map<string, std::unique_ptr<Graph>> graphs;
TF_RETURN_IF_ERROR(
CreateGraphs(options, &graphs, &ek->flib_def, run_state_args));
TF_RETURN_IF_ERROR(CreateGraphs(options, &graphs, &ek->flib_def,
run_state_args, &ek->input_types,
&ek->output_types));
if (run_state_args->is_partial_run) {
ek->graph = std::move(run_state_args->graph);
@ -1079,17 +1117,37 @@ Status DirectSession::GetOrCreateExecutors(
item->executor.reset(executor);
}
// Compute the rendezvous keys to avoid recomputing them every time.
//
// We always use the first device as the device name portion of the
// key, even if we're feeding another graph.
for (const string& input : inputs) {
ek->input_keys[input] = GetRendezvousKey(
input, device_set_.client_device()->attributes(), FrameAndIter(0, 0));
}
for (const string& output : outputs) {
ek->output_keys[output] = GetRendezvousKey(
output, device_set_.client_device()->attributes(), FrameAndIter(0, 0));
// Cache the mapping from input/output names to graph elements to
// avoid recomputing it every time.
if (!run_state_args->is_partial_run) {
// For regular `Run()`, we use the function calling convention, and so
// maintain a mapping from input/output names to
// argument/return-value ordinal index.
for (size_t i = 0; i < inputs_sorted.size(); ++i) {
const string& input = inputs_sorted[i];
ek->input_name_to_index[input] = i;
}
for (size_t i = 0; i < outputs_sorted.size(); ++i) {
const string& output = outputs_sorted[i];
ek->output_name_to_index[output] = i;
}
} else {
// For `PRun()`, we use the rendezvous calling convention, and so
// maintain a mapping from input/output names to rendezvous keys.
//
// We always use the first device as the device name portion of the
// key, even if we're feeding another graph.
for (size_t i = 0; i < inputs_sorted.size(); ++i) {
const string& input = inputs_sorted[i];
ek->input_name_to_rendezvous_key[input] = GetRendezvousKey(
input, device_set_.client_device()->attributes(), FrameAndIter(0, 0));
}
for (size_t i = 0; i < outputs_sorted.size(); ++i) {
const string& output = outputs_sorted[i];
ek->output_name_to_rendezvous_key[output] =
GetRendezvousKey(output, device_set_.client_device()->attributes(),
FrameAndIter(0, 0));
}
}
// Reacquire the lock, try to insert into the map.
@ -1110,7 +1168,8 @@ Status DirectSession::CreateGraphs(
const BuildGraphOptions& subgraph_options,
std::unordered_map<string, std::unique_ptr<Graph>>* outputs,
std::unique_ptr<FunctionLibraryDefinition>* flib_def,
RunStateArgs* run_state_args) {
RunStateArgs* run_state_args, DataTypeVector* input_types,
DataTypeVector* output_types) {
mutex_lock l(graph_def_lock_);
std::unique_ptr<SimpleClientGraph> client_graph;
@ -1135,6 +1194,23 @@ Status DirectSession::CreateGraphs(
execution_state->BuildGraph(subgraph_options, &client_graph));
}
if (subgraph_options.feed_endpoints.size() !=
client_graph->feed_types.size()) {
return errors::Internal(
"Graph pruning failed: requested number of feed endpoints = ",
subgraph_options.feed_endpoints.size(),
" versus number of pruned feed endpoints = ",
client_graph->feed_types.size());
}
if (subgraph_options.fetch_endpoints.size() !=
client_graph->fetch_types.size()) {
return errors::Internal(
"Graph pruning failed: requested number of fetch endpoints = ",
subgraph_options.fetch_endpoints.size(),
" versus number of pruned fetch endpoints = ",
client_graph->fetch_types.size());
}
auto current_stateful_placements = execution_state->GetStatefulPlacements();
// Update our current state based on the execution_state's
// placements. If there are any mismatches for a node,
@ -1240,6 +1316,8 @@ Status DirectSession::CreateGraphs(
}
}
*flib_def = std::move(client_graph->flib_def);
std::swap(*input_types, client_graph->feed_types);
std::swap(*output_types, client_graph->fetch_types);
return s;
}

View File

@ -132,8 +132,13 @@ class DirectSession : public Session {
NameNodeMap name_to_node;
std::unique_ptr<FunctionLibraryDefinition> flib_def;
std::vector<PerPartitionExecutorsAndLib> items;
std::unordered_map<string, string> input_keys;
std::unordered_map<string, string> output_keys;
std::unordered_map<string, size_t> input_name_to_index;
std::unordered_map<string, string> input_name_to_rendezvous_key;
std::unordered_map<string, size_t> output_name_to_index;
std::unordered_map<string, string> output_name_to_rendezvous_key;
DataTypeVector input_types;
DataTypeVector output_types;
};
// For each live partial execution, the session maintains a RunState.
@ -187,7 +192,8 @@ class DirectSession : public Session {
const BuildGraphOptions& options,
std::unordered_map<string, std::unique_ptr<Graph>>* outputs,
std::unique_ptr<FunctionLibraryDefinition>* flib_def,
RunStateArgs* run_state_args);
RunStateArgs* run_state_args, DataTypeVector* input_types,
DataTypeVector* output_types);
::tensorflow::Status ExtendLocked(const GraphDef& graph)
EXCLUSIVE_LOCKS_REQUIRED(graph_def_lock_);
@ -196,17 +202,17 @@ class DirectSession : public Session {
const Tensor& resource_tensor, Tensor* retrieved_tensor);
// Feeds more inputs to the executors, triggering further execution.
::tensorflow::Status SendInputs(
::tensorflow::Status SendPRunInputs(
const std::vector<std::pair<string, Tensor>>& inputs,
const ExecutorsAndKeys* executors_and_keys,
IntraProcessRendezvous* rendez);
// Fetches more outputs from the executors. It waits until the output
// tensors are computed.
::tensorflow::Status RecvOutputs(const std::vector<string>& output_names,
const ExecutorsAndKeys* executors_and_keys,
RunState* run_state,
std::vector<Tensor>* outputs);
::tensorflow::Status RecvPRunOutputs(
const std::vector<string>& output_names,
const ExecutorsAndKeys* executors_and_keys, RunState* run_state,
std::vector<Tensor>* outputs);
// Check if the specified fetches can be computed from the feeds
// that we have already provided.

View File

@ -130,9 +130,11 @@ Status GraphRunner::Run(Graph* graph, FunctionLibraryRuntime* function_library,
}
// Call RewriteGraphForExecution
subgraph::RewriteGraphMetadata metadata;
TF_RETURN_IF_ERROR(subgraph::RewriteGraphForExecution(
graph_to_run.get(), input_names, output_names, {} /* target nodes */,
cpu_device_->attributes()));
cpu_device_->attributes(), false /* use_function_convention */,
&metadata));
// Create the local executor and the Rendezvous for fetching back the
// constants.

View File

@ -21,9 +21,9 @@ limitations under the License.
namespace tensorflow {
namespace {
// Replaces ReadVariableOp nodes which are only used by Sends and sinks with
// _UnsafeReadVariable nodes, as this transforamtion is safe and will improve
// performance.
// Replaces ReadVariableOp nodes which are only used by Sends, sinks,
// and function Retvals with _UnsafeReadVariable nodes, as this
// transformation is safe and will improve performance.
class ResourceVariableReadPass : public GraphOptimizationPass {
public:
Status Run(const GraphOptimizationPassOptions& options) override {
@ -43,7 +43,8 @@ class ResourceVariableReadPass : public GraphOptimizationPass {
if (n->type_string() == "ReadVariableOp") {
bool skip = false;
for (const Edge* e : n->out_edges()) {
if (!e->dst()->IsSend() && e->dst()->name() != "_SINK") {
if (!e->dst()->IsSend() && e->dst()->type_string() != "_Retval" &&
e->dst()->name() != "_SINK") {
skip = true;
}
}

View File

@ -284,9 +284,11 @@ Status SimpleGraphExecutionState::InitBaseGraph(
if (session_options_ &&
session_options_->config.graph_options().place_pruned_graph()) {
// Rewrite the graph before placement.
rewrite_metadata_.reset(new subgraph::RewriteGraphMetadata);
TF_RETURN_IF_ERROR(subgraph::RewriteGraphForExecution(
new_graph.get(), options.feed_endpoints, options.fetch_endpoints,
options.target_nodes, device_set_->client_device()->attributes()));
options.target_nodes, device_set_->client_device()->attributes(),
options.use_function_convention, rewrite_metadata_.get()));
}
// Save stateful placements before placing.
@ -333,15 +335,26 @@ Status SimpleGraphExecutionState::BuildGraph(
std::unique_ptr<Graph> ng(new Graph(flib_def_.get()));
CopyGraph(*graph_, ng.get());
subgraph::RewriteGraphMetadata rewrite_metadata;
if (session_options_ == nullptr ||
!session_options_->config.graph_options().place_pruned_graph()) {
// Extract the subset of the graph that needs to be run, adding feed/fetch
// ops as needed.
TF_RETURN_IF_ERROR(subgraph::RewriteGraphForExecution(
ng.get(), options.feed_endpoints, options.fetch_endpoints,
options.target_nodes, device_set_->client_device()->attributes()));
options.target_nodes, device_set_->client_device()->attributes(),
options.use_function_convention, &rewrite_metadata));
} else {
// This SimpleGraphExecutionState represents a graph that was
// pruned when this was constructed, so we copy the metadata from
// a member variable.
CHECK(rewrite_metadata_);
rewrite_metadata = *rewrite_metadata_;
}
CHECK_EQ(options.feed_endpoints.size(), rewrite_metadata.feed_types.size());
CHECK_EQ(options.fetch_endpoints.size(), rewrite_metadata.fetch_types.size());
// Make a fresh copy of the function library for the client graph.
std::unique_ptr<FunctionLibraryDefinition> flib(
new FunctionLibraryDefinition(*flib_def_));
@ -363,7 +376,8 @@ Status SimpleGraphExecutionState::BuildGraph(
// since the local CostModel used to record its stats is sized by
// the largest node id.
std::unique_ptr<SimpleClientGraph> dense_copy(
new SimpleClientGraph(std::move(flib)));
new SimpleClientGraph(std::move(flib), rewrite_metadata.feed_types,
rewrite_metadata.fetch_types));
CopyGraph(*ng, &dense_copy->graph);
// TODO(vrv): We should check invariants of the graph here.

View File

@ -39,6 +39,10 @@ struct SessionOptions;
class StepStats;
class Timeline;
namespace subgraph {
struct RewriteGraphMetadata;
}
struct SimpleGraphExecutionStateOptions {
const DeviceSet* device_set = nullptr;
const SessionOptions* session_options = nullptr;
@ -50,13 +54,19 @@ struct SimpleGraphExecutionStateOptions {
// A SimpleClientGraph is simply a sub-graph of the full graph as induced by
// BuildGraphOptions.
struct SimpleClientGraph {
explicit SimpleClientGraph(std::unique_ptr<FunctionLibraryDefinition> flib)
: flib_def(std::move(flib)), graph(flib_def.get()) {}
explicit SimpleClientGraph(std::unique_ptr<FunctionLibraryDefinition> flib,
DataTypeVector feed_types,
DataTypeVector fetch_types)
: flib_def(std::move(flib)),
graph(flib_def.get()),
feed_types(std::move(feed_types)),
fetch_types(std::move(fetch_types)) {}
// Each client-graph gets its own function library since optimization passes
// post rewrite for execution might want to introduce new functions.
std::unique_ptr<FunctionLibraryDefinition> flib_def;
Graph graph;
int32 placement_version;
DataTypeVector feed_types;
DataTypeVector fetch_types;
};
// SimpleGraphExecutionState is responsible for generating an
@ -190,6 +200,10 @@ class SimpleGraphExecutionState {
// and may be updated by a graph optimization pass.
std::unique_ptr<FunctionLibraryDefinition> flib_def_;
// `rewrite_metadata_` is only set for SimpleGraphExecutionState
// objects created by `MakeForPrunedGraph()`.
std::unique_ptr<subgraph::RewriteGraphMetadata> rewrite_metadata_;
// The dataflow graph owned by this object.
Graph* graph_;

View File

@ -789,7 +789,7 @@ Status FunctionCallFrame::GetRetvals(std::vector<Tensor>* rets) const {
rets->clear();
rets->reserve(rets_.size());
for (size_t i = 0; i < rets_.size(); ++i) {
auto item = rets_[i];
const auto& item = rets_[i];
if (item.has_val) {
rets->push_back(item.val);
} else {
@ -799,6 +799,19 @@ Status FunctionCallFrame::GetRetvals(std::vector<Tensor>* rets) const {
return Status::OK();
}
Status FunctionCallFrame::ConsumeRetvals(std::vector<Tensor>* rets) {
rets->clear();
rets->reserve(rets_.size());
for (size_t i = 0; i < rets_.size(); ++i) {
if (rets_[i].has_val) {
rets->emplace_back(std::move(rets_[i].val));
} else {
return errors::Internal("Retval[", i, "] does not have value");
}
}
return Status::OK();
}
Status FunctionCallFrame::GetArg(int index, Tensor* val) const {
if (index < 0 || static_cast<size_t>(index) >= args_.size()) {
return errors::InvalidArgument("GetArg ", index, " is not within [0, ",

View File

@ -259,6 +259,7 @@ class FunctionCallFrame {
// Caller methods.
Status SetArgs(gtl::ArraySlice<Tensor> args);
Status GetRetvals(std::vector<Tensor>* rets) const;
Status ConsumeRetvals(std::vector<Tensor>* rets);
// Callee methods.
Status GetArg(int index, Tensor* val) const;

View File

@ -55,8 +55,13 @@ namespace {
// state).
static Status FeedInputs(Graph* g, const DeviceAttributes& device_info,
const gtl::ArraySlice<string>& fed_outputs,
subgraph::NameIndex* name_index) {
for (const string& t : fed_outputs) {
bool use_function_convention,
subgraph::NameIndex* name_index,
DataTypeVector* out_feed_types) {
out_feed_types->clear();
out_feed_types->reserve(fed_outputs.size());
for (size_t i = 0; i < fed_outputs.size(); ++i) {
const string& t = fed_outputs[i];
TensorId id(ParseTensorName(t));
auto iter = name_index->find(id.first);
@ -71,17 +76,31 @@ static Status FeedInputs(Graph* g, const DeviceAttributes& device_info,
}
Node* recv_node;
TF_RETURN_IF_ERROR(
NodeBuilder(strings::StrCat("_recv_", id.first, "_", id.second),
"_Recv")
.Attr("tensor_type", BaseType(n->output_type(id.second)))
.Attr("tensor_name", t)
.Attr("send_device", device_info.name())
.Attr("recv_device", device_info.name())
.Attr("send_device_incarnation",
static_cast<int64>(device_info.incarnation()))
.Attr("client_terminated", true)
.Finalize(g, &recv_node));
if (!use_function_convention) {
TF_RETURN_IF_ERROR(
NodeBuilder(strings::StrCat("_recv_", id.first, "_", id.second),
"_Recv")
.Attr("tensor_type", BaseType(n->output_type(id.second)))
.Attr("tensor_name", t)
.Attr("send_device", device_info.name())
.Attr("recv_device", device_info.name())
.Attr("send_device_incarnation",
static_cast<int64>(device_info.incarnation()))
.Attr("client_terminated", true)
.Finalize(g, &recv_node));
} else {
// NOTE(mrry): We must include the index as part of the node
// name, because _Arg is a "stateful" kernel and therefore
// its name must uniquely identify a kernel instance across all
// graphs in the same session.
TF_RETURN_IF_ERROR(NodeBuilder(strings::StrCat("_arg_", id.first, "_",
id.second, "_", i),
"_Arg")
.Attr("T", BaseType(n->output_type(id.second)))
.Attr("index", static_cast<int32>(i))
.Finalize(g, &recv_node));
}
recv_node->set_assigned_device_name(device_info.name());
// Copy the _output_shapes from the original node to the feed node,
@ -130,6 +149,7 @@ static Status FeedInputs(Graph* g, const DeviceAttributes& device_info,
}
g->RemoveEdge(e);
}
out_feed_types->push_back(BaseType(n->output_type(id.second)));
}
return Status::OK();
}
@ -181,9 +201,14 @@ namespace subgraph {
Status FetchOutputs(Graph* g, const DeviceAttributes& device_info,
const gtl::ArraySlice<string>& fetch_outputs,
NameIndex* name_index, std::vector<Node*>* fetch_nodes) {
fetch_nodes->clear();
for (const string& t : fetch_outputs) {
bool use_function_convention, NameIndex* name_index,
std::vector<Node*>* out_fetch_nodes,
DataTypeVector* out_fetch_types) {
out_fetch_nodes->clear();
out_fetch_nodes->reserve(fetch_outputs.size());
for (size_t i = 0; i < fetch_outputs.size(); ++i) {
const string& t = fetch_outputs[i];
// Parse t into node_name and output_index.
TensorId id(ParseTensorName(t));
@ -213,25 +238,39 @@ Status FetchOutputs(Graph* g, const DeviceAttributes& device_info,
// Create the fetch Node and connect it up
Node* send_node;
TF_RETURN_IF_ERROR(
NodeBuilder(strings::StrCat("_send_", id.first, "_", id.second),
"_Send")
.Input(n, id.second)
.Attr("tensor_name", t)
.Attr("send_device", device_info.name())
.Attr("recv_device", device_info.name())
.Attr("send_device_incarnation",
static_cast<int64>(device_info.incarnation()))
.Attr("client_terminated", true)
.Finalize(g, &send_node));
if (!use_function_convention) {
TF_RETURN_IF_ERROR(
NodeBuilder(strings::StrCat("_send_", id.first, "_", id.second),
"_Send")
.Input(n, id.second)
.Attr("tensor_name", t)
.Attr("send_device", device_info.name())
.Attr("recv_device", device_info.name())
.Attr("send_device_incarnation",
static_cast<int64>(device_info.incarnation()))
.Attr("client_terminated", true)
.Finalize(g, &send_node));
} else {
// NOTE(mrry): We must include the index as part of the node
// name, because _Retval is a "stateful" kernel and therefore
// its name must uniquely identify a kernel instance across all
// graphs in the same session.
TF_RETURN_IF_ERROR(NodeBuilder(strings::StrCat("_retval_", id.first, "_",
id.second, "_", i),
"_Retval")
.Input(n, id.second)
.Attr("T", BaseType(n->output_type(id.second)))
.Attr("index", static_cast<int32>(i))
.Finalize(g, &send_node));
}
send_node->set_assigned_device_name(device_info.name());
VLOG(1) << "Created fetch node: " << SummarizeNodeDef(send_node->def());
// Update the index.
(*name_index)[send_node->name()] = send_node;
g->AddControlEdge(send_node, g->sink_node());
fetch_nodes->push_back(send_node);
out_fetch_nodes->push_back(send_node);
out_fetch_types->push_back(BaseType(n->output_type(id.second)));
}
return Status::OK();
@ -241,7 +280,8 @@ Status RewriteGraphForExecution(
Graph* g, const gtl::ArraySlice<string>& fed_outputs,
const gtl::ArraySlice<string>& fetch_outputs,
const gtl::ArraySlice<string>& target_node_names,
const DeviceAttributes& device_info) {
const DeviceAttributes& device_info, bool use_function_convention,
RewriteGraphMetadata* out_metadata) {
if (fetch_outputs.empty() && target_node_names.empty()) {
return errors::InvalidArgument(
"Must specify at least one target to fetch or execute.");
@ -274,18 +314,21 @@ Status RewriteGraphForExecution(
// currently listed in "fetch_nodes". We pass "name_index" so the index is
// kept up to date.
if (!fed_outputs.empty()) {
TF_RETURN_IF_ERROR(FeedInputs(g, device_info, fed_outputs, &name_index));
TF_RETURN_IF_ERROR(FeedInputs(g, device_info, fed_outputs,
use_function_convention, &name_index,
&out_metadata->feed_types));
}
// Add the fetch nodes, also updating "name_index".
std::vector<Node*> fetch_nodes;
if (!fetch_outputs.empty()) {
TF_RETURN_IF_ERROR(
FetchOutputs(g, device_info, fetch_outputs, &name_index, &fetch_nodes));
TF_RETURN_IF_ERROR(FetchOutputs(g, device_info, fetch_outputs,
use_function_convention, &name_index,
&fetch_nodes, &out_metadata->fetch_types));
}
// Prune the graph to only compute what is needed for the fetch nodes and the
// targets nodes.
// target nodes.
if (!fetch_nodes.empty() || !target_node_names.empty()) {
TF_RETURN_IF_ERROR(
PruneForTargets(g, name_index, fetch_nodes, target_node_names));

View File

@ -26,6 +26,18 @@ limitations under the License.
namespace tensorflow {
namespace subgraph {
// Information about a graph rewritten by `RewriteGraphForExecution()`.
struct RewriteGraphMetadata {
// The element type of each tensor fed to this subgraph. The order
// of types corresponds to the order of tensor names in
// `fed_outputs` when calling `RewriteGraphForExecution()`.
DataTypeVector feed_types;
// The element type of each tensor fetched from this subgraph. The
// order of types corresponds to the order of tensor names in
// `fetch_outputs` when calling `RewriteGraphForExecution()`.
DataTypeVector fetch_types;
};
// Rewrite the graph structure of "*g" to deal with feeding node
// outputs, fetching node outputs, and only running a subset of the
// graph. "fed_outputs" and "fetch_outputs" are both lists of
@ -56,7 +68,8 @@ Status RewriteGraphForExecution(
Graph* g, const gtl::ArraySlice<string>& fed_outputs,
const gtl::ArraySlice<string>& fetch_outputs,
const gtl::ArraySlice<string>& target_node_names,
const DeviceAttributes& device_info);
const DeviceAttributes& device_info, bool use_function_convention,
RewriteGraphMetadata* out_metadata);
typedef std::unordered_map<StringPiece, Node*, StringPiece::Hasher> NameIndex;

View File

@ -104,7 +104,8 @@ class SubgraphTest : public ::testing::Test {
}
string Subgraph(const string& fed_str, const string& fetch_str,
const string& targets_str) {
const string& targets_str,
bool use_function_convention = false) {
Graph* subgraph = new Graph(OpRegistry::Global());
CopyGraph(*g_, subgraph);
std::vector<string> fed =
@ -114,13 +115,18 @@ class SubgraphTest : public ::testing::Test {
std::vector<string> targets =
str_util::Split(targets_str, ',', str_util::SkipEmpty());
Status s = subgraph::RewriteGraphForExecution(subgraph, fed, fetch, targets,
device_info_);
subgraph::RewriteGraphMetadata metadata;
Status s = subgraph::RewriteGraphForExecution(
subgraph, fed, fetch, targets, device_info_, use_function_convention,
&metadata);
if (!s.ok()) {
delete subgraph;
return s.ToString();
}
EXPECT_EQ(fed.size(), metadata.feed_types.size());
EXPECT_EQ(fetch.size(), metadata.fetch_types.size());
// Replace the graph with the subgraph for the rest of the display program
g_.reset(subgraph);
return "OK";
@ -178,6 +184,20 @@ TEST_F(SubgraphTest, FedOutputs1) {
ExpectNodes("W1,W2,_recv_input_1,t1,t2");
}
TEST_F(SubgraphTest, FedOutputs1_FunctionConvention) {
ExpectOK(
"node { name: 'W1' op: 'TestParams' }"
"node { name: 'W2' op: 'TestParams' }"
"node { name: 'input' op: 'TestInput' }"
"node { name: 't1' op: 'TestMul' input: [ 'W1', 'input:1' ] }"
"node { name: 't2' op: 'TestMul' input: [ 'W2', 't1' ] }"
"node { name: 't3_a' op: 'TestRelu' input: 't2' }"
"node { name: 't3_b' op: 'TestRelu' input: 't2' }");
EXPECT_EQ("OK",
Subgraph("input:1", "", "t2", true /* use_function_convention */));
ExpectNodes("W1,W2,_arg_input_1_0,t1,t2");
}
TEST_F(SubgraphTest, FedRefNode) {
ExpectOK(
"node { name: 'W1' op: 'TestParams' }"
@ -189,7 +209,19 @@ TEST_F(SubgraphTest, FedRefNode) {
EXPECT_FALSE(IsRefType(CHECK_NOTNULL(n)->output_type(0)));
}
TEST_F(SubgraphTest, FedOutputs2) {
TEST_F(SubgraphTest, FedRefNode_FunctionConvention) {
ExpectOK(
"node { name: 'W1' op: 'TestParams' }"
"node { name: 'W2' op: 'TestParams' }"
"node { name: 't1' op: 'TestMul' input: [ 'W2', 'W1' ] }");
EXPECT_EQ("OK",
Subgraph("W1:0", "", "t1", true /* use_function_convention */));
ExpectNodes("_arg_W1_0_0,W2,t1");
Node* n = FindNode("_arg_W1_0_0");
EXPECT_FALSE(IsRefType(CHECK_NOTNULL(n)->output_type(0)));
}
TEST_F(SubgraphTest, FedOutputs2_FunctionConvention) {
ExpectOK(
"node { name: 'W1' op: 'TestParams' }"
"node { name: 'W2' op: 'TestParams' }"
@ -200,8 +232,9 @@ TEST_F(SubgraphTest, FedOutputs2) {
"node { name: 't3_b' op: 'TestRelu' input: 't2' }");
// We feed input:1, but nothing connects to it, so the _recv(input:1)
// node also disappears.
EXPECT_EQ("OK", Subgraph("input:1,t1,W2", "", "t2"));
ExpectNodes("_recv_t1_0,_recv_W2_0,t2");
EXPECT_EQ("OK", Subgraph("input:1,t1,W2", "", "t2",
true /* use_function_convention */));
ExpectNodes("_arg_t1_0_1,_arg_W2_0_2,t2");
}
TEST_F(SubgraphTest, FetchOutputs1) {
@ -218,6 +251,22 @@ TEST_F(SubgraphTest, FetchOutputs1) {
"W1,W2,input,t1,t2,_send_W2_0,_send_input_1,_send_t1_0,_send_t2_0");
}
TEST_F(SubgraphTest, FetchOutputs1_FunctionConvention) {
ExpectOK(
"node { name: 'W1' op: 'TestParams' }"
"node { name: 'W2' op: 'TestParams' }"
"node { name: 'input' op: 'TestInput' }"
"node { name: 't1' op: 'TestMul' input: [ 'W1', 'input:1' ] }"
"node { name: 't2' op: 'TestMul' input: [ 'W2', 't1' ] }"
"node { name: 't3_a' op: 'TestRelu' input: 't2' }"
"node { name: 't3_b' op: 'TestRelu' input: 't2' }");
EXPECT_EQ("OK", Subgraph("", "W2,input:1,t1,t2", "t2",
true /* use_function_convention */));
ExpectNodes(
"W1,W2,input,t1,t2,_retval_W2_0_0,_retval_input_1_1,_retval_t1_0_2,_"
"retval_t2_0_3");
}
TEST_F(SubgraphTest, FetchOutputs2) {
ExpectOK(
"node { name: 'W1' op: 'TestParams' }"
@ -231,6 +280,20 @@ TEST_F(SubgraphTest, FetchOutputs2) {
ExpectNodes("W1,W2,input,t1,t2,t3_a,_send_t3_a_0");
}
TEST_F(SubgraphTest, FetchOutputs2_FunctionConvention) {
ExpectOK(
"node { name: 'W1' op: 'TestParams' }"
"node { name: 'W2' op: 'TestParams' }"
"node { name: 'input' op: 'TestInput' }"
"node { name: 't1' op: 'TestMul' input: [ 'W1', 'input:1' ] }"
"node { name: 't2' op: 'TestMul' input: [ 'W2', 't1' ] }"
"node { name: 't3_a' op: 'TestRelu' input: 't2' }"
"node { name: 't3_b' op: 'TestRelu' input: 't2' }");
EXPECT_EQ("OK",
Subgraph("", "t3_a", "t2", true /* use_function_convention */));
ExpectNodes("W1,W2,input,t1,t2,t3_a,_retval_t3_a_0_0");
}
TEST_F(SubgraphTest, ChainOfFools) {
ExpectOK(
"node { name: 'a' op: 'TestParams' }"
@ -315,7 +378,8 @@ TEST_F(SubgraphTest, FedOutputsPreservesOutputShapes) {
REGISTER_OP("In").Output("o: float");
REGISTER_OP("Op").Input("i: float").Output("o: float");
static void BM_Subgraph(int iters, int num_nodes) {
static void BM_SubgraphHelper(int iters, int num_nodes,
bool use_function_convention) {
DeviceAttributes device_info;
device_info.set_name("/job:a/replica:0/task:0/cpu:0");
device_info.set_device_type(DeviceType(DEVICE_CPU).type());
@ -347,12 +411,26 @@ static void BM_Subgraph(int iters, int num_nodes) {
while (--iters > 0) {
Graph* subgraph = new Graph(OpRegistry::Global());
CopyGraph(g, subgraph);
TF_CHECK_OK(subgraph::RewriteGraphForExecution(subgraph, fed, fetch,
targets, device_info));
subgraph::RewriteGraphMetadata metadata;
TF_CHECK_OK(subgraph::RewriteGraphForExecution(
subgraph, fed, fetch, targets, device_info, use_function_convention,
&metadata));
delete subgraph;
}
}
static void BM_Subgraph(int iters, int num_nodes) {
BM_SubgraphHelper(iters, num_nodes, false /* use_function_convention */);
}
static void BM_SubgraphFunctionConvention(int iters, int num_nodes) {
BM_SubgraphHelper(iters, num_nodes, true /* use_function_convention */);
}
BENCHMARK(BM_Subgraph)->Arg(100)->Arg(1000)->Arg(10000)->Arg(100000);
BENCHMARK(BM_SubgraphFunctionConvention)
->Arg(100)
->Arg(1000)
->Arg(10000)
->Arg(100000);
} // namespace
} // namespace tensorflow

View File

@ -820,7 +820,7 @@ class DebugDumpDir(object):
self._node_op_types[node.name] = node.op
for inp in node.input:
if is_copy_node(inp) and node.op == "_Send":
if is_copy_node(inp) and (node.op == "_Send" or node.op == "_Retval"):
self._copy_send_nodes.append(node.name)
if inp.startswith("^"):

View File

@ -196,7 +196,7 @@ class ControlFlowTest(test.TestCase):
with self.assertRaisesWithPredicateMatch(
errors_impl.InvalidArgumentError,
lambda e: "The tensor returned for" in str(e)):
lambda e: "Retval[0] does not have value" in str(e)):
dead_branch.eval()
def testSwitchMergeLess(self):

View File

@ -147,9 +147,10 @@ Status FoldConstants(const GraphDef& input_graph_def,
TF_RETURN_IF_ERROR(
ImportGraphDef(import_opts, cleaned_graph_def, &input_graph, nullptr));
DeviceAttributes device_attributes;
subgraph::RewriteGraphMetadata metadata;
TF_RETURN_IF_ERROR(subgraph::RewriteGraphForExecution(
&input_graph, context.input_names, context.output_names, {},
device_attributes));
device_attributes, false /* use_function_convention */, &metadata));
bool was_mutated;
TF_RETURN_IF_ERROR(DoConstantFoldingWithStatus(
ConstantFoldingOptions(), nullptr, Env::Default(), nullptr, &input_graph,