Move keras related module test to keras/integration_test.
PiperOrigin-RevId: 306685976 Change-Id: I3d674da22e5a919048298773ebe32c60338e5fba
This commit is contained in:
parent
4ab0fd6f42
commit
8575c534b4
tensorflow/python
@ -51,3 +51,12 @@ tf_py_test(
|
||||
"//tensorflow/python:extra_py_tests_deps",
|
||||
],
|
||||
)
|
||||
|
||||
tf_py_test(
|
||||
name = "module_test",
|
||||
srcs = ["module_test.py"],
|
||||
deps = [
|
||||
"//tensorflow:tensorflow_py",
|
||||
"//tensorflow/python:extra_py_tests_deps",
|
||||
],
|
||||
)
|
||||
|
63
tensorflow/python/keras/integration_test/module_test.py
Normal file
63
tensorflow/python/keras/integration_test/module_test.py
Normal file
@ -0,0 +1,63 @@
|
||||
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
class ModuleTest(tf.test.TestCase):
|
||||
|
||||
def test_module_discover_layer_variable(self):
|
||||
m = tf.Module()
|
||||
m.a = tf.keras.layers.Dense(1)
|
||||
m.b = tf.keras.layers.Dense(2)
|
||||
|
||||
# The weights of the layer has not been created yet.
|
||||
self.assertEmpty(m.variables)
|
||||
self.assertLen(m.submodules, 2)
|
||||
|
||||
inputs = tf.keras.layers.Input((1,))
|
||||
m.a(inputs)
|
||||
m.b(inputs)
|
||||
|
||||
variable_list = m.variables
|
||||
self.assertLen(variable_list, 4)
|
||||
self.assertIs(variable_list[0], m.a.kernel)
|
||||
self.assertIs(variable_list[1], m.a.bias)
|
||||
self.assertIs(variable_list[2], m.b.kernel)
|
||||
self.assertIs(variable_list[3], m.b.bias)
|
||||
|
||||
def test_model_discover_submodule(self):
|
||||
m = tf.keras.models.Sequential(
|
||||
layers=[tf.keras.layers.Dense(1), tf.keras.layers.Dense(2)])
|
||||
|
||||
self.assertEqual(m.submodules, (m.layers[0], m.layers[1]))
|
||||
m(tf.keras.layers.Input((1,)))
|
||||
self.assertLen(m.variables, 4)
|
||||
|
||||
def test_model_wrapped_in_module_discovers_submodules(self):
|
||||
linear = tf.keras.models.Sequential(
|
||||
[tf.keras.layers.Dense(units=1, input_shape=[1])])
|
||||
linear.compile(optimizer="sgd", loss="mean_squared_error")
|
||||
m = tf.Module()
|
||||
m.l = linear
|
||||
self.assertNotEmpty(m.submodules)
|
||||
self.assertLen(m.variables, 2)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
tf.test.main()
|
@ -32,8 +32,6 @@ from tensorflow.python.eager import context
|
||||
from tensorflow.python.eager import def_function
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.framework import test_util
|
||||
from tensorflow.python.keras import layers
|
||||
from tensorflow.python.keras import models
|
||||
from tensorflow.python.module import module
|
||||
from tensorflow.python.ops import variables
|
||||
from tensorflow.python.platform import test
|
||||
@ -505,42 +503,6 @@ class FlattenTest(parameterized.TestCase, test_util.TensorFlowTestCase):
|
||||
("decoder", "w", 0, 0, "k"): mod.decoder.w[0][0]["k"],
|
||||
("decoder", "w", 0, 1, "k"): mod.decoder.w[0][1]["k"]},)
|
||||
|
||||
def test_module_discover_layer_variable(self):
|
||||
m = module.Module()
|
||||
m.a = layers.Dense(1)
|
||||
m.b = layers.Dense(2)
|
||||
|
||||
# The weights of the layer has not been created yet.
|
||||
self.assertEmpty(m.variables)
|
||||
self.assertLen(m.submodules, 2)
|
||||
|
||||
inputs = layers.Input((1,))
|
||||
m.a(inputs)
|
||||
m.b(inputs)
|
||||
|
||||
variable_list = m.variables
|
||||
self.assertLen(variable_list, 4)
|
||||
self.assertIs(variable_list[0], m.a.kernel)
|
||||
self.assertIs(variable_list[1], m.a.bias)
|
||||
self.assertIs(variable_list[2], m.b.kernel)
|
||||
self.assertIs(variable_list[3], m.b.bias)
|
||||
|
||||
def test_model_discover_submodule(self):
|
||||
m = models.Sequential(layers=[layers.Dense(1),
|
||||
layers.Dense(2)])
|
||||
|
||||
self.assertEqual(m.submodules, (m.layers[0], m.layers[1]))
|
||||
m(layers.Input((1,)))
|
||||
self.assertLen(m.variables, 4)
|
||||
|
||||
def test_model_wrapped_in_module_discovers_submodules(self):
|
||||
linear = models.Sequential([layers.Dense(units=1, input_shape=[1])])
|
||||
linear.compile(optimizer="sgd", loss="mean_squared_error")
|
||||
m = module.Module()
|
||||
m.l = linear
|
||||
self.assertNotEmpty(m.submodules)
|
||||
self.assertLen(m.variables, 2)
|
||||
|
||||
def test_raises_error_with_path(self):
|
||||
if six.PY2:
|
||||
class NonOrderable(object):
|
||||
|
Loading…
Reference in New Issue
Block a user