Add MLIR definition for StatelessTruncatedNormalOp.

PiperOrigin-RevId: 324625125
Change-Id: Ia17f1179c18c509b60427765134c377be3aef403
This commit is contained in:
A. Unique TensorFlower 2020-08-03 10:01:28 -07:00 committed by TensorFlower Gardener
parent 3ccad31d39
commit 856dc4f7b6

View File

@ -9596,6 +9596,33 @@ The outputs are a deterministic function of `shape` and `seed`.
TF_DerivedResultTypeAttr dtype = TF_DerivedResultTypeAttr<0>;
}
def TF_StatelessTruncatedNormalOp : TF_Op<"StatelessTruncatedNormal", [NoSideEffect]> {
let summary = [{
Outputs deterministic pseudorandom values from a truncated normal distribution.
}];
let description = [{
The generated values follow a normal distribution with mean 0 and standard
deviation 1, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.
The outputs are a deterministic function of `shape` and `seed`.
}];
let arguments = (ins
TF_I32OrI64Tensor:$shape,
TF_I32OrI64Tensor:$seed
);
let results = (outs
TF_FpTensor:$output
);
TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>;
TF_DerivedOperandTypeAttr Tseed = TF_DerivedOperandTypeAttr<1>;
TF_DerivedResultTypeAttr dtype = TF_DerivedResultTypeAttr<0>;
}
def TF_StopGradientOp : TF_Op<"StopGradient", [NoSideEffect, TF_AllTypesMatch<["input", "output"]>]> {
let summary = "Stops gradient computation.";