Make tf.If work with ConcreteFunction.

PiperOrigin-RevId: 313860966
Change-Id: I1fccdaf06802511a7020a4045751cdd6b6821687
This commit is contained in:
Guangda Lai 2020-05-29 15:25:59 -07:00 committed by TensorFlower Gardener
parent f90c649e28
commit 85396efcd3
3 changed files with 90 additions and 5 deletions

View File

@ -2214,6 +2214,21 @@ py_library(
],
)
py_test(
name = "ops/functional_ops_test",
srcs = ["ops/functional_ops_test.py"],
python_version = "PY3",
srcs_version = "PY2AND3",
deps = [
":client_testlib",
":dtypes",
":function",
":functional_ops",
":tensor_spec",
"//tensorflow/python/eager:def_function",
],
)
cuda_py_test(
name = "function_test",
size = "medium",

View File

@ -838,12 +838,13 @@ def If(cond, inputs, then_branch, else_branch, name=None):
or else_branch(inputs).
"""
# pylint: disable=protected-access
if isinstance(then_branch, function._DefinedFunction):
tlist = [_.type for _ in then_branch.definition.signature.output_arg]
else:
# We assume that `then_branch` is a ConcreteFunction here.
tlist = nest.flatten(then_branch.output_dtypes)
return gen_functional_ops._if(
cond,
inputs, [_.type for _ in then_branch.definition.signature.output_arg],
then_branch,
else_branch,
name=name)
cond, inputs, tlist, then_branch, else_branch, name=name)
def Gradient(inputs, f, name=None):

View File

@ -0,0 +1,69 @@
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for functional operations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.eager import def_function
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import function
from tensorflow.python.framework import tensor_spec
from tensorflow.python.framework import test_util
from tensorflow.python.ops import functional_ops
from tensorflow.python.platform import test
class FunctionalOpsTest(test.TestCase):
@test_util.deprecated_graph_mode_only
def testIfWithDefun(self):
@function.Defun(dtypes.float32)
def Then(x):
return x + 1
@function.Defun(dtypes.float32)
def Else(x):
return x - 1
with self.cached_session():
inputs = [10.]
result = self.evaluate(functional_ops.If(False, inputs, Then, Else))
self.assertEqual([9.0], result)
def testIfWithFunction(self):
@def_function.function(
input_signature=[tensor_spec.TensorSpec((), dtypes.float32)])
def Then(x):
return x + 1
@def_function.function(
input_signature=[tensor_spec.TensorSpec((), dtypes.float32)])
def Else(x):
return x - 1
with self.cached_session():
inputs = [10.]
result = self.evaluate(
functional_ops.If(False, inputs, Then.get_concrete_function(),
Else.get_concrete_function()))
self.assertEqual([9.0], result)
if __name__ == '__main__':
test.main()