Update documentation of tf.tpu.experimental.(shared_)embedding_column to reflect that a user should pass in the same function if they use the same dynamic learning rate for multiple tables.
PiperOrigin-RevId: 299967731 Change-Id: I97c9ecf89c932774ec8daafdc65c3376570a886a
This commit is contained in:
parent
9ebf4a223b
commit
842246a4fd
tensorflow/python/tpu
@ -86,7 +86,10 @@ def embedding_column(categorical_column,
|
||||
and any sequence longer will be truncated. This must be positive for
|
||||
sequence features and 0 for non-sequence features.
|
||||
learning_rate_fn: A function that takes global step and returns learning
|
||||
rate for the embedding table.
|
||||
rate for the embedding table. If you intend to use the same learning rate
|
||||
for multiple embedding tables, please ensure that you pass the exact same
|
||||
python function to all calls of embedding_column, otherwise performence
|
||||
may suffer.
|
||||
use_safe_embedding_lookup: If true, uses safe_embedding_lookup_sparse
|
||||
instead of embedding_lookup_sparse. safe_embedding_lookup_sparse ensures
|
||||
there are no empty rows and all weights and ids are positive at the
|
||||
@ -196,7 +199,10 @@ def shared_embedding_columns(categorical_columns,
|
||||
sequence shorter then this will be padded with 0 embeddings and any
|
||||
sequence longer will be truncated.
|
||||
learning_rate_fn: A function that takes global step and returns learning
|
||||
rate for the embedding table.
|
||||
rate for the embedding table. If you intend to use the same learning rate
|
||||
for multiple embedding tables, please ensure that you pass the exact same
|
||||
python function to all calls of shared_embedding_columns, otherwise
|
||||
performence may suffer.
|
||||
use_safe_embedding_lookup: If true, uses safe_embedding_lookup_sparse
|
||||
instead of embedding_lookup_sparse. safe_embedding_lookup_sparse ensures
|
||||
there are no empty rows and all weights and ids are positive at the
|
||||
|
@ -107,7 +107,10 @@ def embedding_column_v2(categorical_column,
|
||||
and any sequence longer will be truncated. This must be positive for
|
||||
sequence features and 0 for non-sequence features.
|
||||
learning_rate_fn: A function that takes global step and returns learning
|
||||
rate for the embedding table.
|
||||
rate for the embedding table. If you intend to use the same learning rate
|
||||
for multiple embedding tables, please ensure that you pass the exact same
|
||||
python function to all calls of embedding_column, otherwise performence
|
||||
may suffer.
|
||||
embedding_lookup_device: The device on which to run the embedding lookup.
|
||||
Valid options are "cpu", "tpu_tensor_core", and "tpu_embedding_core".
|
||||
If specifying "tpu_tensor_core", a tensor_core_shape must be supplied.
|
||||
@ -266,7 +269,10 @@ def shared_embedding_columns_v2(categorical_columns,
|
||||
sequence shorter then this will be padded with 0 embeddings and any
|
||||
sequence longer will be truncated.
|
||||
learning_rate_fn: A function that takes global step and returns learning
|
||||
rate for the embedding table.
|
||||
rate for the embedding table. If you intend to use the same learning rate
|
||||
for multiple embedding tables, please ensure that you pass the exact same
|
||||
python function to all calls of shared_embedding_columns, otherwise
|
||||
performence may suffer.
|
||||
embedding_lookup_device: The device on which to run the embedding lookup.
|
||||
Valid options are "cpu", "tpu_tensor_core", and "tpu_embedding_core". If
|
||||
specifying "tpu_tensor_core", a tensor_core_shape must be supplied.
|
||||
|
Loading…
Reference in New Issue
Block a user