change the size of input to remedy OOM issue.
PiperOrigin-RevId: 317995769 Change-Id: I1358449e989a41c5621e6a4d56e603387be0490d
This commit is contained in:
parent
e5a4b2534b
commit
83e4305ca4
@ -40,9 +40,10 @@ class ImagePreprocessingDistributionTest(
|
||||
preprocessing_test_utils.PreprocessingLayerTest):
|
||||
|
||||
def test_distribution(self, distribution):
|
||||
np_images = np.random.random((1000, 32, 32, 3)).astype(np.float32)
|
||||
# TODO(b/159738418): large image input causes OOM in ubuntu multi gpu.
|
||||
np_images = np.random.random((32, 32, 32, 3)).astype(np.float32)
|
||||
image_dataset = dataset_ops.Dataset.from_tensor_slices(np_images).batch(
|
||||
32, drop_remainder=True)
|
||||
16, drop_remainder=True)
|
||||
|
||||
with distribution.scope():
|
||||
input_data = keras.Input(shape=(32, 32, 3), dtype=dtypes.float32)
|
||||
@ -58,7 +59,7 @@ class ImagePreprocessingDistributionTest(
|
||||
output = flatten_layer(preprocessed_image)
|
||||
cls_layer = keras.layers.Dense(units=1, activation="sigmoid")
|
||||
output = cls_layer(output)
|
||||
model = keras.Model(inputs=input_data, outputs=preprocessed_image)
|
||||
model = keras.Model(inputs=input_data, outputs=output)
|
||||
model.compile(loss="binary_crossentropy")
|
||||
_ = model.predict(image_dataset)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user