diff --git a/tensorflow/lite/python/lite.py b/tensorflow/lite/python/lite.py index 4c506dca229..1b226b7d25b 100644 --- a/tensorflow/lite/python/lite.py +++ b/tensorflow/lite/python/lite.py @@ -365,7 +365,9 @@ class TFLiteConverterV2(TFLiteConverterBase): to apply when converting the model. E.g. `[Optimize.DEFAULT]` representative_dataset: A representative dataset that can be used to generate input and output samples for the model. The converter can use the - dataset to evaluate different optimizations. + dataset to evaluate different optimizations. Note that this is an optional + attribute but it is necessary if INT8 is the only support builtin ops in + target ops. experimental_new_converter: Experimental flag, subject to change. Enables MLIR-based conversion instead of TOCO conversion. experimental_new_quantizer: Experimental flag, subject to change. diff --git a/tensorflow/python/keras/optimizer_v2/nadam.py b/tensorflow/python/keras/optimizer_v2/nadam.py index 2b94b2267e3..a572e225b62 100644 --- a/tensorflow/python/keras/optimizer_v2/nadam.py +++ b/tensorflow/python/keras/optimizer_v2/nadam.py @@ -80,7 +80,7 @@ class Nadam(optimizer_v2.OptimizerV2): rate for the exponentially weighted infinity norm. epsilon: A small constant for numerical stability. name: Optional name for the operations created when applying gradients. - Defaults to "Adamax". + Defaults to "Nadam". **kwargs: keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by norm; `clipvalue` is clip gradients by value, `decay` is included for backward compatibility to