Export EfficientNet models to the public API.
PiperOrigin-RevId: 306281184 Change-Id: I37257d5afdc0ffec6eacd218e8f2e86ad118fb89
This commit is contained in:
parent
cb81df5708
commit
81594ed391
@ -17,6 +17,7 @@ keras_packages = [
|
||||
"tensorflow.python.keras",
|
||||
"tensorflow.python.keras.activations",
|
||||
"tensorflow.python.keras.applications.densenet",
|
||||
"tensorflow.python.keras.applications.efficientnet",
|
||||
"tensorflow.python.keras.applications.imagenet_utils",
|
||||
"tensorflow.python.keras.applications.inception_resnet_v2",
|
||||
"tensorflow.python.keras.applications.inception_v3",
|
||||
|
@ -13,6 +13,7 @@
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
# pylint: disable=invalid-name
|
||||
# pylint: disable=missing-docstring
|
||||
"""EfficientNet models for Keras.
|
||||
|
||||
Reference paper:
|
||||
@ -142,6 +143,53 @@ DENSE_KERNEL_INITIALIZER = {
|
||||
|
||||
layers = VersionAwareLayers()
|
||||
|
||||
BASE_DOCSTRING = """Instantiates the {name} architecture.
|
||||
|
||||
Reference paper:
|
||||
- [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](
|
||||
https://arxiv.org/abs/1905.11946) (ICML 2019)
|
||||
|
||||
Optionally loads weights pre-trained on ImageNet.
|
||||
Note that the data format convention used by the model is
|
||||
the one specified in your Keras config at `~/.keras/keras.json`.
|
||||
If you have never configured it, it defaults to `"channels_last"`.
|
||||
|
||||
Arguments:
|
||||
include_top: Whether to include the fully-connected
|
||||
layer at the top of the network. Defaults to True.
|
||||
weights: One of `None` (random initialization),
|
||||
'imagenet' (pre-training on ImageNet),
|
||||
or the path to the weights file to be loaded. Defaults to 'imagenet'.
|
||||
input_tensor: Optional Keras tensor
|
||||
(i.e. output of `layers.Input()`)
|
||||
to use as image input for the model.
|
||||
input_shape: Optional shape tuple, only to be specified
|
||||
if `include_top` is False.
|
||||
It should have exactly 3 inputs channels.
|
||||
pooling: Optional pooling mode for feature extraction
|
||||
when `include_top` is `False`. Defaults to None.
|
||||
- `None` means that the output of the model will be
|
||||
the 4D tensor output of the
|
||||
last convolutional layer.
|
||||
- `avg` means that global average pooling
|
||||
will be applied to the output of the
|
||||
last convolutional layer, and thus
|
||||
the output of the model will be a 2D tensor.
|
||||
- `max` means that global max pooling will
|
||||
be applied.
|
||||
classes: Optional number of classes to classify images
|
||||
into, only to be specified if `include_top` is True, and
|
||||
if no `weights` argument is specified. Defaults to 1000 (number of
|
||||
ImageNet classes).
|
||||
classifier_activation: A `str` or callable. The activation function to use
|
||||
on the "top" layer. Ignored unless `include_top=True`. Set
|
||||
`classifier_activation=None` to return the logits of the "top" layer.
|
||||
Defaults to 'softmax'.
|
||||
|
||||
Returns:
|
||||
A `keras.Model` instance.
|
||||
"""
|
||||
|
||||
|
||||
def EfficientNet(
|
||||
width_coefficient,
|
||||
@ -163,8 +211,8 @@ def EfficientNet(
|
||||
"""Instantiates the EfficientNet architecture using given scaling coefficients.
|
||||
|
||||
Reference paper:
|
||||
- [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]
|
||||
(https://arxiv.org/abs/1905.11946) (ICML 2019)
|
||||
- [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](
|
||||
https://arxiv.org/abs/1905.11946) (ICML 2019)
|
||||
|
||||
Optionally loads weights pre-trained on ImageNet.
|
||||
Note that the data format convention used by the model is
|
||||
@ -474,6 +522,7 @@ def EfficientNetB0(include_top=True,
|
||||
input_shape=None,
|
||||
pooling=None,
|
||||
classes=1000,
|
||||
classifier_activation='softmax',
|
||||
**kwargs):
|
||||
return EfficientNet(
|
||||
1.0,
|
||||
@ -487,6 +536,7 @@ def EfficientNetB0(include_top=True,
|
||||
input_shape=input_shape,
|
||||
pooling=pooling,
|
||||
classes=classes,
|
||||
classifier_activation=classifier_activation,
|
||||
**kwargs)
|
||||
|
||||
|
||||
@ -498,6 +548,7 @@ def EfficientNetB1(include_top=True,
|
||||
input_shape=None,
|
||||
pooling=None,
|
||||
classes=1000,
|
||||
classifier_activation='softmax',
|
||||
**kwargs):
|
||||
return EfficientNet(
|
||||
1.0,
|
||||
@ -511,6 +562,7 @@ def EfficientNetB1(include_top=True,
|
||||
input_shape=input_shape,
|
||||
pooling=pooling,
|
||||
classes=classes,
|
||||
classifier_activation=classifier_activation,
|
||||
**kwargs)
|
||||
|
||||
|
||||
@ -522,6 +574,7 @@ def EfficientNetB2(include_top=True,
|
||||
input_shape=None,
|
||||
pooling=None,
|
||||
classes=1000,
|
||||
classifier_activation='softmax',
|
||||
**kwargs):
|
||||
return EfficientNet(
|
||||
1.1,
|
||||
@ -535,6 +588,7 @@ def EfficientNetB2(include_top=True,
|
||||
input_shape=input_shape,
|
||||
pooling=pooling,
|
||||
classes=classes,
|
||||
classifier_activation=classifier_activation,
|
||||
**kwargs)
|
||||
|
||||
|
||||
@ -546,6 +600,7 @@ def EfficientNetB3(include_top=True,
|
||||
input_shape=None,
|
||||
pooling=None,
|
||||
classes=1000,
|
||||
classifier_activation='softmax',
|
||||
**kwargs):
|
||||
return EfficientNet(
|
||||
1.2,
|
||||
@ -559,6 +614,7 @@ def EfficientNetB3(include_top=True,
|
||||
input_shape=input_shape,
|
||||
pooling=pooling,
|
||||
classes=classes,
|
||||
classifier_activation=classifier_activation,
|
||||
**kwargs)
|
||||
|
||||
|
||||
@ -570,6 +626,7 @@ def EfficientNetB4(include_top=True,
|
||||
input_shape=None,
|
||||
pooling=None,
|
||||
classes=1000,
|
||||
classifier_activation='softmax',
|
||||
**kwargs):
|
||||
return EfficientNet(
|
||||
1.4,
|
||||
@ -583,6 +640,7 @@ def EfficientNetB4(include_top=True,
|
||||
input_shape=input_shape,
|
||||
pooling=pooling,
|
||||
classes=classes,
|
||||
classifier_activation=classifier_activation,
|
||||
**kwargs)
|
||||
|
||||
|
||||
@ -594,6 +652,7 @@ def EfficientNetB5(include_top=True,
|
||||
input_shape=None,
|
||||
pooling=None,
|
||||
classes=1000,
|
||||
classifier_activation='softmax',
|
||||
**kwargs):
|
||||
return EfficientNet(
|
||||
1.6,
|
||||
@ -607,6 +666,7 @@ def EfficientNetB5(include_top=True,
|
||||
input_shape=input_shape,
|
||||
pooling=pooling,
|
||||
classes=classes,
|
||||
classifier_activation=classifier_activation,
|
||||
**kwargs)
|
||||
|
||||
|
||||
@ -618,6 +678,7 @@ def EfficientNetB6(include_top=True,
|
||||
input_shape=None,
|
||||
pooling=None,
|
||||
classes=1000,
|
||||
classifier_activation='softmax',
|
||||
**kwargs):
|
||||
return EfficientNet(
|
||||
1.8,
|
||||
@ -631,6 +692,7 @@ def EfficientNetB6(include_top=True,
|
||||
input_shape=input_shape,
|
||||
pooling=pooling,
|
||||
classes=classes,
|
||||
classifier_activation=classifier_activation,
|
||||
**kwargs)
|
||||
|
||||
|
||||
@ -642,6 +704,7 @@ def EfficientNetB7(include_top=True,
|
||||
input_shape=None,
|
||||
pooling=None,
|
||||
classes=1000,
|
||||
classifier_activation='softmax',
|
||||
**kwargs):
|
||||
return EfficientNet(
|
||||
2.0,
|
||||
@ -655,9 +718,20 @@ def EfficientNetB7(include_top=True,
|
||||
input_shape=input_shape,
|
||||
pooling=pooling,
|
||||
classes=classes,
|
||||
classifier_activation=classifier_activation,
|
||||
**kwargs)
|
||||
|
||||
|
||||
EfficientNetB0.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB0')
|
||||
EfficientNetB1.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB1')
|
||||
EfficientNetB2.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB2')
|
||||
EfficientNetB3.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB3')
|
||||
EfficientNetB4.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB4')
|
||||
EfficientNetB5.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB5')
|
||||
EfficientNetB6.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB6')
|
||||
EfficientNetB7.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB7')
|
||||
|
||||
|
||||
@keras_export('keras.applications.efficientnet.preprocess_input')
|
||||
def preprocess_input(x, data_format=None): # pylint: disable=unused-argument
|
||||
return x
|
||||
|
@ -83,6 +83,7 @@ KERAS_API_INIT_FILES = [
|
||||
"keras/activations/__init__.py",
|
||||
"keras/applications/__init__.py",
|
||||
"keras/applications/densenet/__init__.py",
|
||||
"keras/applications/efficientnet/__init__.py",
|
||||
"keras/applications/imagenet_utils/__init__.py",
|
||||
"keras/applications/inception_resnet_v2/__init__.py",
|
||||
"keras/applications/inception_v3/__init__.py",
|
||||
|
@ -103,6 +103,7 @@ KERAS_API_INIT_FILES_V1 = [
|
||||
"keras/activations/__init__.py",
|
||||
"keras/applications/__init__.py",
|
||||
"keras/applications/densenet/__init__.py",
|
||||
"keras/applications/efficientnet/__init__.py",
|
||||
"keras/applications/imagenet_utils/__init__.py",
|
||||
"keras/applications/inception_resnet_v2/__init__.py",
|
||||
"keras/applications/inception_v3/__init__.py",
|
||||
|
@ -0,0 +1,43 @@
|
||||
path: "tensorflow.keras.applications.efficientnet"
|
||||
tf_module {
|
||||
member_method {
|
||||
name: "EfficientNetB0"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB1"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB2"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB3"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB4"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB5"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB6"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB7"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "decode_predictions"
|
||||
argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "preprocess_input"
|
||||
argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
}
|
@ -4,6 +4,10 @@ tf_module {
|
||||
name: "densenet"
|
||||
mtype: "<type \'module\'>"
|
||||
}
|
||||
member {
|
||||
name: "efficientnet"
|
||||
mtype: "<type \'module\'>"
|
||||
}
|
||||
member {
|
||||
name: "imagenet_utils"
|
||||
mtype: "<type \'module\'>"
|
||||
@ -64,6 +68,38 @@ tf_module {
|
||||
name: "DenseNet201"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB0"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB1"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB2"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB3"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB4"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB5"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB6"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB7"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "InceptionResNetV2"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
|
@ -0,0 +1,43 @@
|
||||
path: "tensorflow.keras.applications.efficientnet"
|
||||
tf_module {
|
||||
member_method {
|
||||
name: "EfficientNetB0"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB1"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB2"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB3"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB4"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB5"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB6"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB7"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "decode_predictions"
|
||||
argspec: "args=[\'preds\', \'top\'], varargs=None, keywords=None, defaults=[\'5\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "preprocess_input"
|
||||
argspec: "args=[\'x\', \'data_format\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||
}
|
||||
}
|
@ -4,6 +4,10 @@ tf_module {
|
||||
name: "densenet"
|
||||
mtype: "<type \'module\'>"
|
||||
}
|
||||
member {
|
||||
name: "efficientnet"
|
||||
mtype: "<type \'module\'>"
|
||||
}
|
||||
member {
|
||||
name: "imagenet_utils"
|
||||
mtype: "<type \'module\'>"
|
||||
@ -64,6 +68,38 @@ tf_module {
|
||||
name: "DenseNet201"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB0"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB1"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB2"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB3"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB4"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB5"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB6"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "EfficientNetB7"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "InceptionResNetV2"
|
||||
argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\', \'classifier_activation\'], varargs=None, keywords=kwargs, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\', \'softmax\'], "
|
||||
|
Loading…
Reference in New Issue
Block a user