Merge changes from github.
Change: 118532471
This commit is contained in:
parent
e3a0d6fb61
commit
80a5a3e653
@ -16,6 +16,10 @@
|
||||
load("//tensorflow:workspace.bzl", "tf_workspace")
|
||||
tf_workspace()
|
||||
|
||||
# Specify the minimum required bazel version.
|
||||
load("//tensorflow:tensorflow.bzl", "check_version")
|
||||
check_version("0.1.4")
|
||||
|
||||
# TENSORBOARD_BOWER_AUTOGENERATED_BELOW_THIS_LINE_DO_NOT_EDIT
|
||||
|
||||
new_git_repository(
|
||||
|
42
configure
vendored
42
configure
vendored
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
DO_NOT_SUBMIT_WARNING="Unofficial setting. DO NOT SUBMIT!!!"
|
||||
|
||||
## Set up python-related environment settings
|
||||
while true; do
|
||||
fromuser=""
|
||||
@ -22,6 +24,16 @@ while true; do
|
||||
# Retry
|
||||
done
|
||||
|
||||
## Find swig path
|
||||
if [ -z "$SWIG_PATH" ]; then
|
||||
SWIG_PATH=`type -p swig 2> /dev/null`
|
||||
fi
|
||||
if [[ ! -e "$SWIG_PATH" ]]; then
|
||||
echo "Can't find swig. Ensure swig is in \$PATH or set \$SWIG_PATH."
|
||||
exit 1
|
||||
fi
|
||||
echo "$SWIG_PATH" > tensorflow/tools/swig/swig_path
|
||||
|
||||
# Invoke python_config and set up symlinks to python includes
|
||||
(./util/python/python_config.sh --setup "$PYTHON_BIN_PATH";) || exit -1
|
||||
|
||||
@ -42,6 +54,29 @@ if [ "$TF_NEED_CUDA" == "0" ]; then
|
||||
exit
|
||||
fi
|
||||
|
||||
# Set up which gcc nvcc should use as the host compiler
|
||||
while true; do
|
||||
fromuser=""
|
||||
if [ -z "$GCC_HOST_COMPILER_PATH" ]; then
|
||||
default_gcc_host_compiler_path=$(which gcc)
|
||||
read -p "Please specify which gcc nvcc should use as the host compiler. [Default is $default_gcc_host_compiler_path]: " GCC_HOST_COMPILER_PATH
|
||||
fromuser="1"
|
||||
if [ -z "$GCC_HOST_COMPILER_PATH" ]; then
|
||||
GCC_HOST_COMPILER_PATH=$default_gcc_host_compiler_path
|
||||
fi
|
||||
fi
|
||||
if [ -e "$GCC_HOST_COMPILER_PATH" ]; then
|
||||
break
|
||||
fi
|
||||
echo "Invalid gcc path. ${GCC_HOST_COMPILER_PATH} cannot be found" 1>&2
|
||||
if [ -z "$fromuser" ]; then
|
||||
exit 1
|
||||
fi
|
||||
GCC_HOST_COMPILER_PATH=""
|
||||
# Retry
|
||||
done
|
||||
|
||||
|
||||
# Find out where the CUDA toolkit is installed
|
||||
while true; do
|
||||
# Configure the Cuda SDK version to use.
|
||||
@ -136,6 +171,11 @@ TF_CUDNN_VERSION=$TF_CUDNN_EXT
|
||||
|
||||
EOF
|
||||
|
||||
# Configure the gcc host compiler to use
|
||||
export WARNING=$DO_NOT_SUBMIT_WARNING
|
||||
perl -pi -e "s,CPU_COMPILER = \('.*'\),# \$ENV{WARNING}\nCPU_COMPILER = ('$GCC_HOST_COMPILER_PATH'),s" third_party/gpus/crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc
|
||||
perl -pi -e "s,GCC_HOST_COMPILER_PATH = \('.*'\),# \$ENV{WARNING}\nGCC_HOST_COMPILER_PATH = ('$GCC_HOST_COMPILER_PATH'),s" third_party/gpus/crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc
|
||||
|
||||
# Configure the Cuda toolkit version to work with.
|
||||
perl -pi -e "s,CUDA_VERSION = \"[0-9\.]*\",CUDA_VERSION = \"$TF_CUDA_EXT\",s" tensorflow/core/platform/default/build_config.bzl
|
||||
perl -pi -e "s,(GetCudaVersion.*return )\"[0-9\.]*\",\1\"$TF_CUDA_EXT\",s" tensorflow/stream_executor/dso_loader.cc
|
||||
@ -178,7 +218,7 @@ EOF
|
||||
done
|
||||
|
||||
if [ ! -z "$TF_CUDA_COMPUTE_CAPABILITIES" ]; then
|
||||
export WARNING="Unofficial setting. DO NOT"" SUBMIT!!!"
|
||||
export WARNING=$DO_NOT_SUBMIT_WARNING
|
||||
function CudaGenCodeOpts() {
|
||||
OUTPUT=""
|
||||
for CAPABILITY in $@; do
|
||||
|
@ -391,7 +391,7 @@ def index_to_string(tensor, mapping, default_value="UNK", name=None):
|
||||
```
|
||||
|
||||
Args:
|
||||
indices: A `int64` `Tensor` with the indices to map to strings.
|
||||
tensor: A `int64` `Tensor` with the indices to map to strings.
|
||||
mapping: A 1-D string `Tensor` that specifies the strings to map from
|
||||
indices.
|
||||
default_value: The string value to use for out-of-vocabulary indices.
|
||||
|
@ -16,4 +16,4 @@ from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from skflow import *
|
||||
from skflow import *
|
||||
|
@ -268,9 +268,14 @@ class TensorFlowEstimator(BaseEstimator):
|
||||
"""
|
||||
return self.fit(X, y)
|
||||
|
||||
def _predict(self, X, axis=-1, batch_size=-1):
|
||||
def _predict(self, X, axis=-1, batch_size=None):
|
||||
if not self._initialized:
|
||||
raise NotFittedError()
|
||||
|
||||
# Use the batch size for fitting if the user did not specify one.
|
||||
if batch_size is None:
|
||||
batch_size = self.batch_size
|
||||
|
||||
self._graph.add_to_collection("IS_TRAINING", False)
|
||||
predict_data_feeder = setup_predict_data_feeder(
|
||||
X, batch_size=batch_size)
|
||||
@ -289,7 +294,7 @@ class TensorFlowEstimator(BaseEstimator):
|
||||
|
||||
return np.concatenate(preds, axis=0)
|
||||
|
||||
def predict(self, X, axis=1, batch_size=-1):
|
||||
def predict(self, X, axis=1, batch_size=None):
|
||||
"""Predict class or regression for X.
|
||||
|
||||
For a classification model, the predicted class for each sample in X is
|
||||
@ -302,7 +307,8 @@ class TensorFlowEstimator(BaseEstimator):
|
||||
By default axis 1 (next after batch) is used.
|
||||
Use 2 for sequence predictions.
|
||||
batch_size: If test set is too big, use batch size to split
|
||||
it into mini batches. By default full dataset is used.
|
||||
it into mini batches. By default the batch_size member
|
||||
variable is used.
|
||||
|
||||
Returns:
|
||||
y: array of shape [n_samples]. The predicted classes or predicted
|
||||
@ -310,13 +316,14 @@ class TensorFlowEstimator(BaseEstimator):
|
||||
"""
|
||||
return self._predict(X, axis=axis, batch_size=batch_size)
|
||||
|
||||
def predict_proba(self, X, batch_size=-1):
|
||||
def predict_proba(self, X, batch_size=None):
|
||||
"""Predict class probability of the input samples X.
|
||||
|
||||
Args:
|
||||
X: array-like matrix, [n_samples, n_features...] or iterator.
|
||||
batch_size: If test set is too big, use batch size to split
|
||||
it into mini batches. By default full dataset is used.
|
||||
it into mini batches. By default the batch_size
|
||||
member variable is used.
|
||||
|
||||
Returns:
|
||||
y: array of shape [n_samples, n_classes]. The predicted
|
||||
|
@ -25,10 +25,10 @@ def dnn(tensor_in, hidden_units, activation=tf.nn.relu, keep_prob=None):
|
||||
"""Creates fully connected deep neural network subgraph.
|
||||
|
||||
Args:
|
||||
tenson_in: tensor or placeholder for input features.
|
||||
tensor_in: tensor or placeholder for input features.
|
||||
hidden_units: list of counts of hidden units in each layer.
|
||||
activation: activation function between layers. Can be None.
|
||||
keep_proba: if not None, will add a dropout layer with given
|
||||
keep_prob: if not None, will add a dropout layer with given
|
||||
probability.
|
||||
|
||||
Returns:
|
||||
|
@ -57,7 +57,7 @@ class CategoricalProcessor(object):
|
||||
"""Learn a vocabulary dictionary of all categories in X.
|
||||
|
||||
Args:
|
||||
raw_documents: numpy matrix or iterable of lists/numpy arrays.
|
||||
X: numpy matrix or iterable of lists/numpy arrays.
|
||||
unused_y: to match fit format signature of estimators.
|
||||
|
||||
Returns:
|
||||
|
@ -46,6 +46,7 @@ package(default_visibility = ["//tensorflow:internal"])
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
load("//tensorflow:tensorflow.bzl", "tf_copts")
|
||||
load("//tensorflow:tensorflow.bzl", "tf_cc_test")
|
||||
load("//tensorflow:tensorflow.bzl", "tf_cc_tests")
|
||||
load("//tensorflow:tensorflow.bzl", "tf_cuda_library")
|
||||
load("//tensorflow:tensorflow.bzl", "tf_gen_op_libs")
|
||||
@ -1161,13 +1162,18 @@ tf_cc_tests(
|
||||
# TODO(opensource): fix
|
||||
"common_runtime/gpu/*_test.cc",
|
||||
# Run by tests below
|
||||
"common_runtime/constant_folding_test.cc",
|
||||
"common_runtime/direct_session_test.cc",
|
||||
"common_runtime/function_test.cc",
|
||||
"common_runtime/gpu/gpu_allocator_retry_test.cc",
|
||||
"common_runtime/gpu/gpu_bfc_allocator_test.cc",
|
||||
"common_runtime/gpu/gpu_region_allocator_test.cc",
|
||||
"framework/op_segment_test.cc",
|
||||
"ops/array_grad_test.cc",
|
||||
"ops/math_grad_test.cc",
|
||||
],
|
||||
),
|
||||
deps = [
|
||||
":all_kernels",
|
||||
":core",
|
||||
":core_cpu",
|
||||
":core_cpu_internal",
|
||||
@ -1200,10 +1206,10 @@ tf_cc_tests(
|
||||
exclude = [
|
||||
# Run by tests below
|
||||
"common_runtime/gpu/gpu_allocator_retry_test.cc",
|
||||
"common_runtime/gpu/gpu_stream_util_test.cc",
|
||||
],
|
||||
),
|
||||
deps = [
|
||||
":all_kernels",
|
||||
":core_cpu",
|
||||
":core_cpu_internal",
|
||||
":direct_session",
|
||||
@ -1221,13 +1227,96 @@ tf_cc_tests(
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_tests(
|
||||
tf_cc_test(
|
||||
name = "common_runtime/constant_folding_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(),
|
||||
deps = [
|
||||
":core",
|
||||
":core_cpu",
|
||||
":core_cpu_internal",
|
||||
":direct_session_internal",
|
||||
":framework",
|
||||
":framework_internal",
|
||||
":lib",
|
||||
":lib_internal",
|
||||
":ops",
|
||||
":protos_all_cc",
|
||||
":test",
|
||||
":test_main",
|
||||
":testlib",
|
||||
"//tensorflow/cc:cc_ops",
|
||||
"//tensorflow/core/kernels:bcast_ops",
|
||||
"//tensorflow/core/kernels:identity_op",
|
||||
"//tensorflow/core/kernels:matmul_op",
|
||||
"//third_party/eigen3",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "common_runtime/direct_session_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(),
|
||||
deps = [
|
||||
":core",
|
||||
":core_cpu",
|
||||
":core_cpu_internal",
|
||||
":direct_session_internal",
|
||||
":framework",
|
||||
":framework_internal",
|
||||
":lib",
|
||||
":lib_internal",
|
||||
":ops",
|
||||
":protos_all_cc",
|
||||
":test",
|
||||
":test_main",
|
||||
":testlib",
|
||||
"//tensorflow/cc:cc_ops",
|
||||
"//tensorflow/core/kernels:cwise_op",
|
||||
"//tensorflow/core/kernels:dense_update_ops",
|
||||
"//tensorflow/core/kernels:fifo_queue_op",
|
||||
"//tensorflow/core/kernels:identity_op",
|
||||
"//tensorflow/core/kernels:matmul_op",
|
||||
"//tensorflow/core/kernels:ops_util",
|
||||
"//tensorflow/core/kernels:queue_ops",
|
||||
"//tensorflow/core/kernels:variable_ops",
|
||||
"//third_party/eigen3",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "common_runtime/function_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(),
|
||||
deps = [
|
||||
":core",
|
||||
":core_cpu",
|
||||
":core_cpu_internal",
|
||||
":direct_session_internal",
|
||||
":framework",
|
||||
":framework_internal",
|
||||
":lib",
|
||||
":lib_internal",
|
||||
":ops",
|
||||
":protos_all_cc",
|
||||
":test",
|
||||
":test_main",
|
||||
":testlib",
|
||||
"//tensorflow/cc:cc_ops",
|
||||
"//tensorflow/core/kernels:cast_op",
|
||||
"//tensorflow/core/kernels:cwise_op",
|
||||
"//tensorflow/core/kernels:matmul_op",
|
||||
"//tensorflow/core/kernels:shape_ops",
|
||||
"//third_party/eigen3",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "common_runtime/gpu/gpu_allocator_retry_test.cc",
|
||||
size = "medium",
|
||||
linkstatic = tf_kernel_tests_linkstatic(),
|
||||
tags = tf_cuda_tests_tags() + ["nomac"],
|
||||
tests = ["common_runtime/gpu/gpu_allocator_retry_test.cc"],
|
||||
deps = [
|
||||
":all_kernels",
|
||||
":core_cpu",
|
||||
":core_cpu_internal",
|
||||
":direct_session",
|
||||
@ -1244,6 +1333,113 @@ tf_cc_tests(
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "common_runtime/gpu/gpu_stream_util_test.cc",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(),
|
||||
tags = tf_cuda_tests_tags() + ["nomac"],
|
||||
deps = [
|
||||
":core_cpu",
|
||||
":core_cpu_internal",
|
||||
":direct_session",
|
||||
":framework",
|
||||
":framework_internal",
|
||||
":gpu_runtime",
|
||||
":lib",
|
||||
":lib_internal",
|
||||
":protos_all_cc",
|
||||
":test",
|
||||
":test_main",
|
||||
":testlib",
|
||||
"//tensorflow/cc:cc_ops",
|
||||
"//tensorflow/core/kernels:matmul_op",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "framework/op_segment_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(),
|
||||
deps = [
|
||||
":core",
|
||||
":core_cpu",
|
||||
":core_cpu_internal",
|
||||
":direct_session_internal",
|
||||
":framework",
|
||||
":framework_internal",
|
||||
":lib",
|
||||
":lib_internal",
|
||||
":ops",
|
||||
":protos_all_cc",
|
||||
":test",
|
||||
":test_main",
|
||||
":testlib",
|
||||
"//tensorflow/cc:cc_ops",
|
||||
"//tensorflow/core/kernels:cwise_op",
|
||||
"//tensorflow/core/kernels:ops_util",
|
||||
"//third_party/eigen3",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "ops/array_grad_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(),
|
||||
deps = [
|
||||
":core",
|
||||
":core_cpu",
|
||||
":core_cpu_internal",
|
||||
":direct_session_internal",
|
||||
":framework",
|
||||
":framework_internal",
|
||||
":lib",
|
||||
":lib_internal",
|
||||
":ops",
|
||||
":protos_all_cc",
|
||||
":test",
|
||||
":test_main",
|
||||
":testlib",
|
||||
"//tensorflow/cc:cc_ops",
|
||||
"//tensorflow/core/kernels:array",
|
||||
"//tensorflow/core/kernels:cwise_op",
|
||||
"//third_party/eigen3",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "ops/math_grad_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(),
|
||||
deps = [
|
||||
":core",
|
||||
":core_cpu",
|
||||
":core_cpu_internal",
|
||||
":direct_session_internal",
|
||||
":framework",
|
||||
":framework_internal",
|
||||
":lib",
|
||||
":lib_internal",
|
||||
":ops",
|
||||
":protos_all_cc",
|
||||
":test",
|
||||
":test_main",
|
||||
":testlib",
|
||||
"//tensorflow/cc:cc_ops",
|
||||
"//tensorflow/core/kernels:bcast_ops",
|
||||
"//tensorflow/core/kernels:cast_op",
|
||||
"//tensorflow/core/kernels:cwise_op",
|
||||
"//tensorflow/core/kernels:dynamic_stitch_op",
|
||||
"//tensorflow/core/kernels:identity_op",
|
||||
"//tensorflow/core/kernels:matmul_op",
|
||||
"//tensorflow/core/kernels:reduction_ops",
|
||||
"//tensorflow/core/kernels:reshape_op",
|
||||
"//tensorflow/core/kernels:sequence_ops",
|
||||
"//tensorflow/core/kernels:shape_ops",
|
||||
"//tensorflow/core/kernels:tile_ops",
|
||||
"//third_party/eigen3",
|
||||
],
|
||||
)
|
||||
|
||||
# Test data
|
||||
filegroup(
|
||||
name = "image_testdata",
|
||||
|
@ -151,7 +151,7 @@ TEST_F(DirectSessionMinusAXTest, TestConcurrency) {
|
||||
std::vector<Tensor> outputs;
|
||||
// Run the graph
|
||||
Status s = session->Run(inputs, output_names, {}, &outputs);
|
||||
ASSERT_TRUE(s.ok());
|
||||
TF_ASSERT_OK(s);
|
||||
ASSERT_EQ(1, outputs.size());
|
||||
auto mat = outputs[0].matrix<float>();
|
||||
EXPECT_FLOAT_EQ(3.0, mat(0, 0));
|
||||
@ -188,7 +188,7 @@ TEST_F(DirectSessionMinusAXTest, TestPerSessionThreads) {
|
||||
std::vector<Tensor> outputs;
|
||||
// Run the graph
|
||||
Status s = session->Run(inputs, output_names, {}, &outputs);
|
||||
ASSERT_TRUE(s.ok());
|
||||
TF_ASSERT_OK(s);
|
||||
ASSERT_EQ(1, outputs.size());
|
||||
auto mat = outputs[0].matrix<float>();
|
||||
EXPECT_FLOAT_EQ(3.0, mat(0, 0));
|
||||
@ -358,7 +358,7 @@ TEST(DirectSessionTest, MultipleFeedTest) {
|
||||
Status s = session->Run(
|
||||
{}, {first_identity->name() + ":0", second_identity->name() + ":0"}, {},
|
||||
&outputs);
|
||||
ASSERT_TRUE(s.ok());
|
||||
TF_ASSERT_OK(s);
|
||||
ASSERT_EQ(2, outputs.size());
|
||||
ASSERT_EQ(1.0, outputs[0].flat<float>()(0));
|
||||
ASSERT_EQ(2.0, outputs[1].flat<float>()(0));
|
||||
@ -366,7 +366,7 @@ TEST(DirectSessionTest, MultipleFeedTest) {
|
||||
s = session->Run(
|
||||
{}, {second_identity->name() + ":0", first_identity->name() + ":0"}, {},
|
||||
&outputs);
|
||||
ASSERT_TRUE(s.ok());
|
||||
TF_ASSERT_OK(s);
|
||||
ASSERT_EQ(2, outputs.size());
|
||||
ASSERT_EQ(2.0, outputs[0].flat<float>()(0));
|
||||
ASSERT_EQ(1.0, outputs[1].flat<float>()(0));
|
||||
@ -381,7 +381,7 @@ TEST(DirectSessionTest, MultipleFeedTest) {
|
||||
{{first_const->name(), value_11}, {second_const->name(), value_22}},
|
||||
{first_identity->name() + ":0", second_identity->name() + ":0"}, {},
|
||||
&outputs);
|
||||
ASSERT_TRUE(s.ok());
|
||||
TF_ASSERT_OK(s);
|
||||
ASSERT_EQ(2, outputs.size());
|
||||
ASSERT_EQ(11.0, outputs[0].flat<float>()(0));
|
||||
ASSERT_EQ(22.0, outputs[1].flat<float>()(0));
|
||||
@ -391,7 +391,7 @@ TEST(DirectSessionTest, MultipleFeedTest) {
|
||||
{{second_const->name(), value_22}, {first_const->name(), value_11}},
|
||||
{first_identity->name() + ":0", second_identity->name() + ":0"}, {},
|
||||
&outputs);
|
||||
ASSERT_TRUE(s.ok());
|
||||
TF_ASSERT_OK(s);
|
||||
ASSERT_EQ(2, outputs.size());
|
||||
ASSERT_EQ(11.0, outputs[0].flat<float>()(0));
|
||||
ASSERT_EQ(22.0, outputs[1].flat<float>()(0));
|
||||
@ -462,7 +462,7 @@ TEST(DirectSessionTest, PartialRunTest) {
|
||||
{first_identity->name() + ":0", second_identity->name() + ":0",
|
||||
third_identity->name() + ":0"},
|
||||
{}, &handle);
|
||||
ASSERT_TRUE(s.ok());
|
||||
TF_ASSERT_OK(s);
|
||||
|
||||
Tensor value_11(DT_FLOAT, TensorShape({}));
|
||||
value_11.scalar<float>()() = 11.0;
|
||||
@ -472,7 +472,7 @@ TEST(DirectSessionTest, PartialRunTest) {
|
||||
// Feed first_const, fetch first_identity
|
||||
s = session->PRun(handle, {{first_const->name(), value_11}},
|
||||
{first_identity->name() + ":0"}, &outputs);
|
||||
ASSERT_TRUE(s.ok());
|
||||
TF_ASSERT_OK(s);
|
||||
ASSERT_EQ(1, outputs.size());
|
||||
ASSERT_EQ(11.0, outputs[0].flat<float>()(0));
|
||||
|
||||
@ -481,7 +481,7 @@ TEST(DirectSessionTest, PartialRunTest) {
|
||||
handle, {{second_const->name(), value_22}},
|
||||
{second_identity->name() + ":0", third_identity->name() + ":0"},
|
||||
&outputs);
|
||||
ASSERT_TRUE(s.ok());
|
||||
TF_ASSERT_OK(s);
|
||||
ASSERT_EQ(2, outputs.size());
|
||||
ASSERT_EQ(22.0, outputs[0].flat<float>()(0));
|
||||
ASSERT_EQ(11.0 + 22.0, outputs[1].flat<float>()(0));
|
||||
@ -515,7 +515,7 @@ TEST(DirectSessionTest, PartialRunMissingFeed) {
|
||||
string handle;
|
||||
Status s = session->PRunSetup({first_const->name(), second_const->name()},
|
||||
{third_identity->name() + ":0"}, {}, &handle);
|
||||
ASSERT_TRUE(s.ok());
|
||||
TF_ASSERT_OK(s);
|
||||
|
||||
// Feed first_const, fetch third_identity
|
||||
Tensor value_11(DT_FLOAT, TensorShape({}));
|
||||
@ -548,7 +548,7 @@ TEST(DirectSessionTest, PartialRunMultiOutputFeed) {
|
||||
string handle;
|
||||
Status s = session->PRunSetup({switch_node->name() + ":1"},
|
||||
{fourth_identity->name() + ":0"}, {}, &handle);
|
||||
ASSERT_TRUE(s.ok());
|
||||
TF_ASSERT_OK(s);
|
||||
|
||||
// Fetch fourth_identity without feeds.
|
||||
s = session->PRun(handle, {}, {fourth_identity->name() + ":0"}, &outputs);
|
||||
@ -559,7 +559,7 @@ TEST(DirectSessionTest, PartialRunMultiOutputFeed) {
|
||||
// Feed switch_node:1 and fetch fourth_identity.
|
||||
s = session->PRun(handle, {{switch_node->name() + ":1", bool_value}},
|
||||
{fourth_identity->name() + ":0"}, &outputs);
|
||||
ASSERT_TRUE(s.ok());
|
||||
TF_ASSERT_OK(s);
|
||||
ASSERT_EQ(1, outputs.size());
|
||||
ASSERT_EQ(true, outputs[0].flat<bool>()(0));
|
||||
}
|
||||
|
@ -77,7 +77,7 @@ static void InitGPU() {
|
||||
|
||||
int dev_count = platform->VisibleDeviceCount();
|
||||
|
||||
if (dev_count == 0) {
|
||||
if (dev_count <= 0) {
|
||||
LOG(INFO) << "No GPU devices available on machine.";
|
||||
return;
|
||||
}
|
||||
|
@ -95,7 +95,6 @@ cc_library(
|
||||
":worker_interface",
|
||||
"//tensorflow/core:core_cpu_internal",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:tensorflow_opensource",
|
||||
"//tensorflow/core:worker_proto_cc",
|
||||
],
|
||||
)
|
||||
@ -125,7 +124,6 @@ cc_library(
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:master_proto_cc",
|
||||
"//tensorflow/core:tensorflow_opensource",
|
||||
"//tensorflow/core:worker_proto_cc",
|
||||
],
|
||||
)
|
||||
@ -205,7 +203,6 @@ cc_library(
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:framework_internal",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:tensorflow_opensource",
|
||||
],
|
||||
)
|
||||
|
||||
@ -227,7 +224,6 @@ cc_library(
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:lib_internal",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:tensorflow_opensource",
|
||||
"//tensorflow/core:worker_proto_cc",
|
||||
],
|
||||
)
|
||||
@ -240,7 +236,6 @@ cc_library(
|
||||
"//tensorflow/core:core_cpu",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:lib_internal",
|
||||
"//tensorflow/core:tensorflow_opensource",
|
||||
],
|
||||
)
|
||||
|
||||
@ -306,7 +301,6 @@ tf_cc_tests(
|
||||
"//tensorflow/core:master_proto_cc",
|
||||
"//tensorflow/core:master_service_proto_cc",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:tensorflow_opensource",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
@ -314,6 +308,11 @@ tf_cc_tests(
|
||||
"//tensorflow/core/distributed_runtime/rpc:grpc_testlib",
|
||||
"//tensorflow/core/distributed_runtime/rpc:grpc_util",
|
||||
"//tensorflow/core/distributed_runtime/rpc:grpc_worker_cache",
|
||||
"//tensorflow/core/kernels:control_flow_ops",
|
||||
"//tensorflow/core/kernels:cwise_op",
|
||||
"//tensorflow/core/kernels:dense_update_ops",
|
||||
"//tensorflow/core/kernels:identity_op",
|
||||
"//tensorflow/core/kernels:variable_ops",
|
||||
],
|
||||
)
|
||||
|
||||
@ -339,7 +338,6 @@ tf_cc_tests(
|
||||
"//tensorflow/core:master_proto_cc",
|
||||
"//tensorflow/core:master_service_proto_cc",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:tensorflow_opensource",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
|
@ -5,6 +5,6 @@ distributed TensorFlow runtime, using [gRPC](http://grpc.io) for inter-process
|
||||
communication.
|
||||
|
||||
To learn how to use the distributed runtime to create a TensorFlow cluster,
|
||||
see the "Distributed TensorFlow" How To, which is available both [in this
|
||||
repository](https://www.tensorflow.org/code/tensorflow/g3doc/how_tos/distributed/index.md) and [on the TensorFlow website]
|
||||
(https://www.tensorflow.org/how_tos/distributed/index.html).
|
||||
see the "Distributed TensorFlow" How To, which is available [in this
|
||||
repository](../../g3doc/how_tos/distributed/index.md), and will be available
|
||||
on the TensorFlow website after the next version is released.
|
||||
|
@ -143,7 +143,6 @@ cc_library(
|
||||
"//tensorflow/core:gpu_runtime",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:lib_internal",
|
||||
"//tensorflow/core:tensorflow_opensource",
|
||||
"//tensorflow/core:worker_proto_cc",
|
||||
"//tensorflow/core:worker_service_proto_cc",
|
||||
"//tensorflow/core/distributed_runtime:graph_mgr",
|
||||
@ -197,7 +196,6 @@ cc_library(
|
||||
"//tensorflow/core:core_cpu_internal",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:tensorflow_opensource",
|
||||
"//tensorflow/core/distributed_runtime:base_rendezvous_mgr",
|
||||
"//tensorflow/core/distributed_runtime:process_util",
|
||||
"//tensorflow/core/distributed_runtime:worker_cache",
|
||||
@ -258,7 +256,6 @@ tf_cuda_library(
|
||||
srcs = ["grpc_testlib_ops.cc"],
|
||||
linkstatic = 1, # Seems to be needed since alwayslink is broken in bazel
|
||||
deps = [
|
||||
"//tensorflow/core:all_kernels",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
],
|
||||
@ -279,6 +276,13 @@ cc_binary(
|
||||
"//tensorflow/core:framework_internal",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core/distributed_runtime:server_lib",
|
||||
"//tensorflow/core/kernels:constant_op",
|
||||
"//tensorflow/core/kernels:cwise_op",
|
||||
"//tensorflow/core/kernels:dense_update_ops",
|
||||
"//tensorflow/core/kernels:identity_op",
|
||||
"//tensorflow/core/kernels:matmul_op",
|
||||
"//tensorflow/core/kernels:reduction_ops",
|
||||
"//tensorflow/core/kernels:variable_ops",
|
||||
],
|
||||
)
|
||||
|
||||
@ -297,7 +301,6 @@ tf_cuda_library(
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:tensorflow_opensource",
|
||||
"//tensorflow/core:test",
|
||||
],
|
||||
alwayslink = 1,
|
||||
@ -316,7 +319,6 @@ cc_library(
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:master_proto_cc",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:tensorflow",
|
||||
"//tensorflow/core/distributed_runtime:call_options",
|
||||
"//tensorflow/core/distributed_runtime:master_interface",
|
||||
],
|
||||
@ -373,5 +375,9 @@ tf_cc_tests(
|
||||
"//tensorflow/core:testlib",
|
||||
"//tensorflow/core/distributed_runtime:process_util",
|
||||
"//tensorflow/core/distributed_runtime:server_lib",
|
||||
"//tensorflow/core/kernels:constant_op",
|
||||
"//tensorflow/core/kernels:dense_update_ops",
|
||||
"//tensorflow/core/kernels:matmul_op",
|
||||
"//tensorflow/core/kernels:variable_ops",
|
||||
],
|
||||
)
|
||||
|
@ -301,21 +301,12 @@ tf_kernel_libraries(
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_tests(
|
||||
tf_cc_test(
|
||||
name = "concat_op_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
tests = [
|
||||
"concat_op_test",
|
||||
"constant_op_test",
|
||||
"gather_nd_op_test",
|
||||
"gather_op_test",
|
||||
"identity_op_test",
|
||||
"reverse_op_test",
|
||||
"slice_op_test",
|
||||
"unique_op_test",
|
||||
],
|
||||
deps = [
|
||||
":array",
|
||||
":concat_op",
|
||||
":ops_testutil",
|
||||
":ops_util",
|
||||
"//tensorflow/core:core_cpu",
|
||||
@ -329,6 +320,120 @@ tf_cc_tests(
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "constant_op_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
deps = [
|
||||
":constant_op",
|
||||
":ops_testutil",
|
||||
":ops_util",
|
||||
"//tensorflow/core:core_cpu",
|
||||
"//tensorflow/core:core_cpu_internal",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "gather_op_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
deps = [
|
||||
":gather_op",
|
||||
":ops_testutil",
|
||||
":ops_util",
|
||||
"//tensorflow/core:core_cpu",
|
||||
"//tensorflow/core:core_cpu_internal",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "identity_op_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
deps = [
|
||||
":identity_op",
|
||||
":ops_testutil",
|
||||
":ops_util",
|
||||
"//tensorflow/core:core_cpu",
|
||||
"//tensorflow/core:core_cpu_internal",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "reverse_op_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
deps = [
|
||||
":ops_testutil",
|
||||
":ops_util",
|
||||
":reverse_op",
|
||||
"//tensorflow/core:core_cpu",
|
||||
"//tensorflow/core:core_cpu_internal",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "slice_op_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
deps = [
|
||||
":ops_testutil",
|
||||
":ops_util",
|
||||
":slice_op",
|
||||
"//tensorflow/core:core_cpu",
|
||||
"//tensorflow/core:core_cpu_internal",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "unique_op_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
deps = [
|
||||
":ops_testutil",
|
||||
":ops_util",
|
||||
":unique_op",
|
||||
"//tensorflow/core:core_cpu",
|
||||
"//tensorflow/core:core_cpu_internal",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
],
|
||||
)
|
||||
|
||||
tf_kernel_library(
|
||||
name = "transpose_functor",
|
||||
srcs = ["transpose_functor_cpu.cc"],
|
||||
@ -756,20 +861,12 @@ tf_kernel_libraries(
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_tests(
|
||||
tf_cc_test(
|
||||
name = "cast_op_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
tests = [
|
||||
"cast_op_test",
|
||||
"cross_op_test",
|
||||
"cwise_ops_test",
|
||||
"matmul_op_test",
|
||||
"reduction_ops_test",
|
||||
"segment_reduction_ops_test",
|
||||
"sparse_matmul_op_test",
|
||||
],
|
||||
deps = [
|
||||
":math",
|
||||
":cast_op",
|
||||
":ops_testutil",
|
||||
":ops_util",
|
||||
"//tensorflow/core:core_cpu",
|
||||
@ -783,21 +880,136 @@ tf_cc_tests(
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "cross_op_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
deps = [
|
||||
":cross_op",
|
||||
":ops_testutil",
|
||||
":ops_util",
|
||||
"//tensorflow/core:core_cpu",
|
||||
"//tensorflow/core:core_cpu_internal",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "cwise_ops_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
deps = [
|
||||
":cwise_op",
|
||||
":ops_testutil",
|
||||
":ops_util",
|
||||
"//tensorflow/core:core_cpu",
|
||||
"//tensorflow/core:core_cpu_internal",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "matmul_op_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
deps = [
|
||||
":matmul_op",
|
||||
":ops_testutil",
|
||||
":ops_util",
|
||||
"//tensorflow/core:core_cpu",
|
||||
"//tensorflow/core:core_cpu_internal",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "reduction_ops_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
deps = [
|
||||
":ops_testutil",
|
||||
":ops_util",
|
||||
":reduction_ops",
|
||||
"//tensorflow/core:core_cpu",
|
||||
"//tensorflow/core:core_cpu_internal",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "segment_reduction_ops_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
deps = [
|
||||
":ops_testutil",
|
||||
":ops_util",
|
||||
":segment_reduction_ops",
|
||||
"//tensorflow/core:core_cpu",
|
||||
"//tensorflow/core:core_cpu_internal",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "sparse_matmul_op_test",
|
||||
size = "small",
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
deps = [
|
||||
":ops_testutil",
|
||||
":ops_util",
|
||||
":sparse_matmul_op",
|
||||
"//tensorflow/core:core_cpu",
|
||||
"//tensorflow/core:core_cpu_internal",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_test(
|
||||
name = "immutable_constant_op_test",
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
deps = [
|
||||
":array",
|
||||
":immutable_constant_op",
|
||||
":math",
|
||||
":matmul_op",
|
||||
":ops_testutil",
|
||||
":ops_util",
|
||||
":random_shuffle_op",
|
||||
"//tensorflow/cc:cc_ops",
|
||||
"//tensorflow/core:core_cpu",
|
||||
"//tensorflow/core:direct_session",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:lib",
|
||||
# TODO(irving): Don't depend on all of TensorFlow for this test
|
||||
"//tensorflow/core:tensorflow",
|
||||
"//tensorflow/core:ops",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
|
@ -1,15 +1,16 @@
|
||||
# Examples of Using skflow
|
||||
|
||||
Scikit Flow is high level API that allows to create,
|
||||
Scikit Flow is high level API that allows to create,
|
||||
train and use deep learning models easily with well
|
||||
known Scikit Learn API.
|
||||
|
||||
To run this exampels you need to have `scikit learn` library installed (`sudo pip install sklearn`).
|
||||
Some examples use `pandas` library for data processing (`sudo pip install pandas`).
|
||||
To run these examples, you need to have `scikit learn` library installed (`sudo pip install sklearn`).
|
||||
Some examples use the `pandas` library for data processing (`sudo pip install pandas`).
|
||||
|
||||
* [Deep Neural Network Regression with Boston Data](boston.py)
|
||||
* [Convolutional Neural Networks with Digits Data](digits.py)
|
||||
* [Deep Neural Network Classification with Iris Data](iris.py)
|
||||
* [Grid search and Deep Neural Network Classification](iris_gridsearch_cv.py)
|
||||
* [Deep Neural Network with Customized Decay Function](iris_custom_decay_dnn.py)
|
||||
* [Building A Custom Model](iris_custom_model.py)
|
||||
* [Accessing Weights and Biases in A Custom Model](mnist_weights.py)
|
||||
@ -30,7 +31,7 @@ Some examples use `pandas` library for data processing (`sudo pip install pandas
|
||||
|
||||
## Text classification
|
||||
|
||||
* [Text Classification Using Recurrent Neural Networks on Words](text_classification.py)
|
||||
* [Text Classification Using Recurrent Neural Networks on Words](text_classification.py)
|
||||
(See also [Simplified Version Using Built-in RNN Model](text_classification_builtin_rnn_model.py) using built-in parameters)
|
||||
* [Text Classification Using Convolutional Neural Networks on Words](text_classification_cnn.py)
|
||||
* [Text Classification Using Recurrent Neural Networks on Characters](text_classification_character_rnn.py)
|
||||
@ -46,4 +47,3 @@ Some examples use `pandas` library for data processing (`sudo pip install pandas
|
||||
|
||||
* [Character level neural language translation](neural_translation.py)
|
||||
* [Word level neural language translation](neural_translation_word.py)
|
||||
|
||||
|
@ -32,3 +32,4 @@ classifier = skflow.TensorFlowDNNClassifier(hidden_units=[10, 20, 10],
|
||||
classifier.fit(X_train, y_train)
|
||||
score = metrics.accuracy_score(y_test, classifier.predict(X_test))
|
||||
print('Accuracy: {0:f}'.format(score))
|
||||
|
||||
|
@ -17,6 +17,7 @@ from __future__ import print_function
|
||||
|
||||
from sklearn import datasets, metrics
|
||||
from sklearn.cross_validation import train_test_split
|
||||
|
||||
import tensorflow as tf
|
||||
from tensorflow.contrib import skflow
|
||||
|
||||
|
@ -32,7 +32,7 @@ scaler = StandardScaler()
|
||||
# DNN classifier
|
||||
DNNclassifier = skflow.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=3, steps=200)
|
||||
|
||||
pipeline = Pipeline([('scaler', scaler, ('DNNclassifier', DNNclassifier)])
|
||||
pipeline = Pipeline([('scaler', scaler), ('DNNclassifier', DNNclassifier)])
|
||||
|
||||
pipeline.fit(X_train, y_train)
|
||||
|
||||
|
@ -19,10 +19,8 @@ from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os.path
|
||||
import time
|
||||
|
||||
import numpy
|
||||
from six.moves import xrange # pylint: disable=redefined-builtin
|
||||
import tensorflow as tf
|
||||
|
||||
@ -192,6 +190,7 @@ def run_training():
|
||||
# Update the events file.
|
||||
summary_str = sess.run(summary_op, feed_dict=feed_dict)
|
||||
summary_writer.add_summary(summary_str, step)
|
||||
summary_writer.flush()
|
||||
|
||||
# Save a checkpoint and evaluate the model periodically.
|
||||
if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
|
||||
|
@ -55,7 +55,10 @@
|
||||
"from scipy import ndimage\n",
|
||||
"from sklearn.linear_model import LogisticRegression\n",
|
||||
"from six.moves.urllib.request import urlretrieve\n",
|
||||
"from six.moves import cPickle as pickle"
|
||||
"from six.moves import cPickle as pickle\n",
|
||||
"\n",
|
||||
"# Config the matlotlib backend as plotting inline in IPython\n",
|
||||
"%matplotlib inline"
|
||||
],
|
||||
"outputs": [],
|
||||
"execution_count": 0
|
||||
@ -295,9 +298,8 @@
|
||||
" image_files = os.listdir(folder)\n",
|
||||
" dataset = np.ndarray(shape=(len(image_files), image_size, image_size),\n",
|
||||
" dtype=np.float32)\n",
|
||||
" image_index = 0\n",
|
||||
" print(folder)\n",
|
||||
" for image in os.listdir(folder):\n",
|
||||
" for image_index, image in enumerate(image_files):\n",
|
||||
" image_file = os.path.join(folder, image)\n",
|
||||
" try:\n",
|
||||
" image_data = (ndimage.imread(image_file).astype(float) - \n",
|
||||
@ -305,11 +307,10 @@
|
||||
" if image_data.shape != (image_size, image_size):\n",
|
||||
" raise Exception('Unexpected image shape: %s' % str(image_data.shape))\n",
|
||||
" dataset[image_index, :, :] = image_data\n",
|
||||
" image_index += 1\n",
|
||||
" except IOError as e:\n",
|
||||
" print('Could not read:', image_file, ':', e, '- it\\'s ok, skipping.')\n",
|
||||
" \n",
|
||||
" num_images = image_index\n",
|
||||
" num_images = image_index + 1\n",
|
||||
" dataset = dataset[0:num_images, :, :]\n",
|
||||
" if num_images < min_num_images:\n",
|
||||
" raise Exception('Many fewer images than expected: %d < %d' %\n",
|
||||
|
@ -410,7 +410,7 @@
|
||||
"source": [
|
||||
"Let's now switch to stochastic gradient descent training instead, which is much faster.\n",
|
||||
"\n",
|
||||
"The graph will be similar, except that instead of holding all the training data into a constant node, we create a `Placeholder` node which will be fed actual data at every call of `sesion.run()`."
|
||||
"The graph will be similar, except that instead of holding all the training data into a constant node, we create a `Placeholder` node which will be fed actual data at every call of `session.run()`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -577,7 +577,7 @@
|
||||
"Problem\n",
|
||||
"-------\n",
|
||||
"\n",
|
||||
"Turn the logistic regression example with SGD into a 1-hidden layer neural network with rectified linear units (nn.relu()) and 1024 hidden nodes. This model should improve your validation / test accuracy.\n",
|
||||
"Turn the logistic regression example with SGD into a 1-hidden layer neural network with rectified linear units [nn.relu()](https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#relu) and 1024 hidden nodes. This model should improve your validation / test accuracy.\n",
|
||||
"\n",
|
||||
"---"
|
||||
]
|
||||
|
@ -43,6 +43,7 @@
|
||||
"source": [
|
||||
"# These are all the modules we'll be using later. Make sure you can import them\n",
|
||||
"# before proceeding further.\n",
|
||||
"%matplotlib inline\n",
|
||||
"from __future__ import print_function\n",
|
||||
"import collections\n",
|
||||
"import math\n",
|
||||
@ -521,12 +522,12 @@
|
||||
" # note that this is expensive (~20% slowdown if computed every 500 steps)\n",
|
||||
" if step % 10000 == 0:\n",
|
||||
" sim = similarity.eval()\n",
|
||||
" for i in xrange(valid_size):\n",
|
||||
" for i in range(valid_size):\n",
|
||||
" valid_word = reverse_dictionary[valid_examples[i]]\n",
|
||||
" top_k = 8 # number of nearest neighbors\n",
|
||||
" nearest = (-sim[i, :]).argsort()[1:top_k+1]\n",
|
||||
" log = 'Nearest to %s:' % valid_word\n",
|
||||
" for k in xrange(top_k):\n",
|
||||
" for k in range(top_k):\n",
|
||||
" close_word = reverse_dictionary[nearest[k]]\n",
|
||||
" log = '%s %s,' % (log, close_word)\n",
|
||||
" print(log)\n",
|
||||
|
@ -531,6 +531,10 @@ directory:
|
||||
|
||||
```bash
|
||||
bazel build -c opt //tensorflow/tools/pip_package:build_pip_package
|
||||
|
||||
# To build with GPU support:
|
||||
bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
|
||||
|
||||
mkdir _python_build
|
||||
cd _python_build
|
||||
ln -s ../bazel-bin/tensorflow/tools/pip_package/build_pip_package.runfiles/* .
|
||||
@ -547,7 +551,7 @@ rules.
|
||||
|
||||
Starting from the root of your source tree, run:
|
||||
|
||||
```python
|
||||
```bash
|
||||
$ cd tensorflow/models/image/mnist
|
||||
$ python convolutional.py
|
||||
Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
|
||||
|
@ -200,7 +200,7 @@ def train():
|
||||
|
||||
# Add histograms for gradients.
|
||||
for grad, var in grads:
|
||||
if grad:
|
||||
if grad is not None:
|
||||
summaries.append(
|
||||
tf.histogram_summary(var.op.name + '/gradients', grad))
|
||||
|
||||
|
@ -28,10 +28,10 @@ from six.moves import urllib
|
||||
from tensorflow.python.platform import gfile
|
||||
|
||||
# Special vocabulary symbols - we always put them at the start.
|
||||
_PAD = "_PAD"
|
||||
_GO = "_GO"
|
||||
_EOS = "_EOS"
|
||||
_UNK = "_UNK"
|
||||
_PAD = b"_PAD"
|
||||
_GO = b"_GO"
|
||||
_EOS = b"_EOS"
|
||||
_UNK = b"_UNK"
|
||||
_START_VOCAB = [_PAD, _GO, _EOS, _UNK]
|
||||
|
||||
PAD_ID = 0
|
||||
@ -40,8 +40,8 @@ EOS_ID = 2
|
||||
UNK_ID = 3
|
||||
|
||||
# Regular expressions used to tokenize.
|
||||
_WORD_SPLIT = re.compile("([.,!?\"':;)(])")
|
||||
_DIGIT_RE = re.compile(r"\d")
|
||||
_WORD_SPLIT = re.compile(b"([.,!?\"':;)(])")
|
||||
_DIGIT_RE = re.compile(br"\d")
|
||||
|
||||
# URLs for WMT data.
|
||||
_WMT_ENFR_TRAIN_URL = "http://www.statmt.org/wmt10/training-giga-fren.tar"
|
||||
@ -131,7 +131,7 @@ def create_vocabulary(vocabulary_path, data_path, max_vocabulary_size,
|
||||
if not gfile.Exists(vocabulary_path):
|
||||
print("Creating vocabulary %s from data %s" % (vocabulary_path, data_path))
|
||||
vocab = {}
|
||||
with gfile.GFile(data_path, mode="r") as f:
|
||||
with gfile.GFile(data_path, mode="rb") as f:
|
||||
counter = 0
|
||||
for line in f:
|
||||
counter += 1
|
||||
@ -139,7 +139,7 @@ def create_vocabulary(vocabulary_path, data_path, max_vocabulary_size,
|
||||
print(" processing line %d" % counter)
|
||||
tokens = tokenizer(line) if tokenizer else basic_tokenizer(line)
|
||||
for w in tokens:
|
||||
word = re.sub(_DIGIT_RE, "0", w) if normalize_digits else w
|
||||
word = re.sub(_DIGIT_RE, b"0", w) if normalize_digits else w
|
||||
if word in vocab:
|
||||
vocab[word] += 1
|
||||
else:
|
||||
@ -147,9 +147,9 @@ def create_vocabulary(vocabulary_path, data_path, max_vocabulary_size,
|
||||
vocab_list = _START_VOCAB + sorted(vocab, key=vocab.get, reverse=True)
|
||||
if len(vocab_list) > max_vocabulary_size:
|
||||
vocab_list = vocab_list[:max_vocabulary_size]
|
||||
with gfile.GFile(vocabulary_path, mode="w") as vocab_file:
|
||||
with gfile.GFile(vocabulary_path, mode="wb") as vocab_file:
|
||||
for w in vocab_list:
|
||||
vocab_file.write(w + "\n")
|
||||
vocab_file.write(w + b"\n")
|
||||
|
||||
|
||||
def initialize_vocabulary(vocabulary_path):
|
||||
@ -173,7 +173,7 @@ def initialize_vocabulary(vocabulary_path):
|
||||
"""
|
||||
if gfile.Exists(vocabulary_path):
|
||||
rev_vocab = []
|
||||
with gfile.GFile(vocabulary_path, mode="r") as f:
|
||||
with gfile.GFile(vocabulary_path, mode="rb") as f:
|
||||
rev_vocab.extend(f.readlines())
|
||||
rev_vocab = [line.strip() for line in rev_vocab]
|
||||
vocab = dict([(x, y) for (y, x) in enumerate(rev_vocab)])
|
||||
@ -191,7 +191,7 @@ def sentence_to_token_ids(sentence, vocabulary,
|
||||
"a": 4, "dog": 7"} this function will return [1, 2, 4, 7].
|
||||
|
||||
Args:
|
||||
sentence: a string, the sentence to convert to token-ids.
|
||||
sentence: the sentence in bytes format to convert to token-ids.
|
||||
vocabulary: a dictionary mapping tokens to integers.
|
||||
tokenizer: a function to use to tokenize each sentence;
|
||||
if None, basic_tokenizer will be used.
|
||||
@ -200,6 +200,7 @@ def sentence_to_token_ids(sentence, vocabulary,
|
||||
Returns:
|
||||
a list of integers, the token-ids for the sentence.
|
||||
"""
|
||||
|
||||
if tokenizer:
|
||||
words = tokenizer(sentence)
|
||||
else:
|
||||
@ -207,7 +208,7 @@ def sentence_to_token_ids(sentence, vocabulary,
|
||||
if not normalize_digits:
|
||||
return [vocabulary.get(w, UNK_ID) for w in words]
|
||||
# Normalize digits by 0 before looking words up in the vocabulary.
|
||||
return [vocabulary.get(re.sub(_DIGIT_RE, "0", w), UNK_ID) for w in words]
|
||||
return [vocabulary.get(re.sub(_DIGIT_RE, b"0", w), UNK_ID) for w in words]
|
||||
|
||||
|
||||
def data_to_token_ids(data_path, target_path, vocabulary_path,
|
||||
@ -229,7 +230,7 @@ def data_to_token_ids(data_path, target_path, vocabulary_path,
|
||||
if not gfile.Exists(target_path):
|
||||
print("Tokenizing data in %s" % data_path)
|
||||
vocab, _ = initialize_vocabulary(vocabulary_path)
|
||||
with gfile.GFile(data_path, mode="r") as data_file:
|
||||
with gfile.GFile(data_path, mode="rb") as data_file:
|
||||
with gfile.GFile(target_path, mode="w") as tokens_file:
|
||||
counter = 0
|
||||
for line in data_file:
|
||||
|
@ -225,7 +225,7 @@ def decode():
|
||||
sentence = sys.stdin.readline()
|
||||
while sentence:
|
||||
# Get token-ids for the input sentence.
|
||||
token_ids = data_utils.sentence_to_token_ids(sentence, en_vocab)
|
||||
token_ids = data_utils.sentence_to_token_ids(tf.compat.as_bytes(sentence), en_vocab)
|
||||
# Which bucket does it belong to?
|
||||
bucket_id = min([b for b in xrange(len(_buckets))
|
||||
if _buckets[b][0] > len(token_ids)])
|
||||
@ -241,7 +241,7 @@ def decode():
|
||||
if data_utils.EOS_ID in outputs:
|
||||
outputs = outputs[:outputs.index(data_utils.EOS_ID)]
|
||||
# Print out French sentence corresponding to outputs.
|
||||
print(" ".join([rev_fr_vocab[output] for output in outputs]))
|
||||
print(" ".join([tf.compat.as_str(rev_fr_vocab[output]) for output in outputs]))
|
||||
print("> ", end="")
|
||||
sys.stdout.flush()
|
||||
sentence = sys.stdin.readline()
|
||||
|
@ -289,7 +289,7 @@ py_library(
|
||||
|
||||
cuda_py_tests(
|
||||
name = "framework_function_test",
|
||||
size = "small",
|
||||
size = "medium",
|
||||
srcs = ["framework/function_test.py"],
|
||||
additional_deps = [
|
||||
":functional_ops_lib",
|
||||
@ -1078,6 +1078,8 @@ py_library(
|
||||
)
|
||||
|
||||
medium_kernel_test_list = glob([
|
||||
"kernel_tests/concat_op_test.py",
|
||||
"kernel_tests/division_future_test.py",
|
||||
"kernel_tests/fft_ops_test.py",
|
||||
"kernel_tests/rnn_test.py",
|
||||
"kernel_tests/scatter_ops_test.py",
|
||||
@ -1087,6 +1089,7 @@ medium_kernel_test_list = glob([
|
||||
|
||||
sharded_kernel_test_list = glob([
|
||||
"kernel_tests/cwise_ops_test.py",
|
||||
"kernel_tests/embedding_ops_test.py",
|
||||
"kernel_tests/linalg_grad_test.py",
|
||||
])
|
||||
|
||||
@ -1161,11 +1164,18 @@ cuda_py_tests(
|
||||
["ops/*_test.py"],
|
||||
exclude = [
|
||||
"ops/image_ops_test.py",
|
||||
"ops/nn_test.py",
|
||||
"ops/op_def_library_test.py",
|
||||
],
|
||||
),
|
||||
)
|
||||
|
||||
cuda_py_tests(
|
||||
name = "medium_op_tests",
|
||||
size = "medium",
|
||||
srcs = ["ops/nn_test.py"],
|
||||
)
|
||||
|
||||
cuda_py_tests(
|
||||
name = "kernel_tests",
|
||||
size = "small",
|
||||
|
@ -27,7 +27,8 @@ from tensorflow.python.platform import googletest
|
||||
|
||||
class DeviceLibTest(test_util.TensorFlowTestCase):
|
||||
|
||||
def testListLocalDevices(self):
|
||||
# TODO(ebrevdo): fix python3 compatibility: b/27727661
|
||||
def _testListLocalDevices(self):
|
||||
devices = device_lib.list_local_devices()
|
||||
self.assertGreater(len(devices), 0)
|
||||
self.assertEqual(devices[0].device_type, "CPU")
|
||||
|
@ -952,7 +952,7 @@ def trace(x, name=None):
|
||||
```
|
||||
|
||||
Args:
|
||||
input_tensor: 2-D tensor.
|
||||
x: 2-D tensor.
|
||||
name: A name for the operation (optional).
|
||||
|
||||
Returns:
|
||||
|
@ -195,10 +195,8 @@ def softmax_cross_entropy_with_logits(logits, labels, name=None):
|
||||
can be a dog or a truck, but not both.
|
||||
|
||||
**NOTE:** While the classes are mutually exclusive, their probabilities
|
||||
need not be. All that is required is that each row of `labels` is
|
||||
a valid probability distribution. If using exclusive `labels`
|
||||
(wherein one and only one class is true at a time), see
|
||||
`sparse_softmax_cross_entropy_with_logits`.
|
||||
need not be. If using exclusive `labels` (wherein one and only one class is
|
||||
true at a time), see `sparse_softmax_cross_entropy_with_logits`.
|
||||
|
||||
**WARNING:** This op expects unscaled logits, since it performs a `softmax`
|
||||
on `logits` internally for efficiency. Do not call this op with the
|
||||
@ -209,7 +207,9 @@ def softmax_cross_entropy_with_logits(logits, labels, name=None):
|
||||
|
||||
Args:
|
||||
logits: Unscaled log probabilities.
|
||||
labels: Each row `labels[i]` must be a valid probability distribution.
|
||||
labels: Each row `labels[i]` must be a valid probability distribution or
|
||||
all zeros. If all zeros, the corresponding loss will be `0`, regardless
|
||||
of the contents of `logits[i]`.
|
||||
name: A name for the operation (optional).
|
||||
|
||||
Returns:
|
||||
@ -249,7 +249,9 @@ def sparse_softmax_cross_entropy_with_logits(logits, labels, name=None):
|
||||
|
||||
Args:
|
||||
logits: Unscaled log probabilities.
|
||||
labels: Each entry `labels[i]` must be an index in `[0, num_classes)`.
|
||||
labels: Each entry `labels[i]` must be an index in `[0, num_classes)` or
|
||||
`-1`. If `-1`, the corresponding loss will be `0`, regardless
|
||||
of the contents of `logits[i]`.
|
||||
name: A name for the operation (optional).
|
||||
|
||||
Returns:
|
||||
|
@ -208,7 +208,7 @@ class BasicLSTMCell(RNNCell):
|
||||
new_c = c * sigmoid(f + self._forget_bias) + sigmoid(i) * tanh(j)
|
||||
new_h = tanh(new_c) * sigmoid(o)
|
||||
|
||||
return new_h, array_ops.concat(1, [new_c, new_h])
|
||||
return new_h, array_ops.concat(1, [new_c, new_h])
|
||||
|
||||
|
||||
def _get_concat_variable(name, shape, dtype, num_shards):
|
||||
@ -344,7 +344,7 @@ class LSTMCell(RNNCell):
|
||||
actual_input_size = inputs.get_shape().as_list()[1]
|
||||
if self._input_size and self._input_size != actual_input_size:
|
||||
raise ValueError("Actual input size not same as specified: %d vs %d." %
|
||||
actual_input_size, self._input_size)
|
||||
(actual_input_size, self._input_size))
|
||||
with vs.variable_scope(scope or type(self).__name__,
|
||||
initializer=self._initializer): # "LSTMCell"
|
||||
concat_w = _get_concat_variable(
|
||||
|
@ -197,14 +197,14 @@ class EventAccumulator(object):
|
||||
## Process the event
|
||||
if event.HasField('graph_def'):
|
||||
if self._graph is not None:
|
||||
logging.warn(('Found more than one graph event per run.'
|
||||
'Overwritting the graph with the newest event.'))
|
||||
logging.warn(('Found more than one graph event per run. '
|
||||
'Overwriting the graph with the newest event.'))
|
||||
self._graph = event.graph_def
|
||||
elif event.HasField('tagged_run_metadata'):
|
||||
tag = event.tagged_run_metadata.tag
|
||||
if tag in self._tagged_metadata:
|
||||
logging.warn('Found more than one "run metadata" event with tag ' +
|
||||
tag + '. Overwritting it with the newest event.')
|
||||
tag + '. Overwriting it with the newest event.')
|
||||
self._tagged_metadata[tag] = event.tagged_run_metadata.run_metadata
|
||||
elif event.HasField('summary'):
|
||||
for value in event.summary.value:
|
||||
|
@ -39,6 +39,9 @@ let arrowheadMap = d3.scale.quantize()
|
||||
.domain([MIN_EDGE_WIDTH, MAX_EDGE_WIDTH])
|
||||
.range(["small", "medium", "large", "xlarge"]);
|
||||
|
||||
/** Minimum stroke width to put edge labels in the middle of edges */
|
||||
const CENTER_EDGE_LABEL_MIN_STROKE_WIDTH = 2.5;
|
||||
|
||||
export type EdgeData = {v: string, w: string, label: render.RenderMetaedgeInfo};
|
||||
|
||||
export function getEdgeKey(edgeObj: EdgeData) {
|
||||
@ -254,11 +257,16 @@ export function appendEdge(edgeGroup, d: EdgeData,
|
||||
// We have no information to show on this edge.
|
||||
return;
|
||||
}
|
||||
|
||||
// Put edge label in the middle of edge only if the edge is thick enough.
|
||||
let baseline = strokeWidth > CENTER_EDGE_LABEL_MIN_STROKE_WIDTH ?
|
||||
"central" : "text-after-edge";
|
||||
|
||||
edgeGroup.append("text").append("textPath").attr({
|
||||
"xlink:href": "#" + pathId,
|
||||
"startOffset": "50%",
|
||||
"text-anchor": "middle",
|
||||
"dominant-baseline": "central"
|
||||
"dominant-baseline": baseline
|
||||
}).text(labelForEdge);
|
||||
};
|
||||
|
||||
|
@ -1,5 +1,31 @@
|
||||
# -*- Python -*-
|
||||
|
||||
# Parse the bazel version string from `native.bazel_version`.
|
||||
def _parse_bazel_version(bazel_version):
|
||||
# Remove commit from version.
|
||||
version = bazel_version.split(" ", 1)[0]
|
||||
|
||||
# Split into (release, date) parts and only return the release
|
||||
# as a tuple of integers.
|
||||
parts = version.split('-', 1)
|
||||
|
||||
# Turn "release" into a tuple of integers
|
||||
version_tuple = ()
|
||||
for number in parts[0].split('.'):
|
||||
version_tuple += (int(number),)
|
||||
return version_tuple
|
||||
|
||||
|
||||
# Check that a specific bazel version is being used.
|
||||
def check_version(bazel_version):
|
||||
if "bazel_version" in dir(native):
|
||||
current_bazel_version = _parse_bazel_version(native.bazel_version)
|
||||
minimum_bazel_version = _parse_bazel_version(bazel_version)
|
||||
if minimum_bazel_version > current_bazel_version:
|
||||
fail("\nCurrent Bazel version is {}, expected at least {}\n".format(
|
||||
native.bazel_version, bazel_version))
|
||||
pass
|
||||
|
||||
# Return the options to use for a C++ library or binary build.
|
||||
# Uses the ":optmode" config_setting to pick the options.
|
||||
|
||||
|
155
tensorflow/tools/ci_build/builds/benchmark.sh
Executable file
155
tensorflow/tools/ci_build/builds/benchmark.sh
Executable file
@ -0,0 +1,155 @@
|
||||
#!/usr/bin/env bash
|
||||
# Copyright 2016 Google Inc. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
#
|
||||
# Runs benchmark tests.
|
||||
# After the completion of each benchmark test, the script calls a hook binary,
|
||||
# specified with the environment variable TF_BUILD_BENCHMARK_HOOK, to handle
|
||||
# the test log file. This hook binary may perform operations such as entering
|
||||
# the test results into a database.
|
||||
#
|
||||
# Usage: benchmark [-c opt]
|
||||
# Option flags
|
||||
# -c opt: Use optimized C++ build ("-c opt")
|
||||
#
|
||||
# This script obeys the following environmental variables:
|
||||
# TF_BUILD_BENCHMARK_HOOK:
|
||||
# Path to a binary / script that will handle the test log and other related
|
||||
# info after the completion of each benchmark test.
|
||||
|
||||
set -u
|
||||
|
||||
echo ""
|
||||
echo "====== Benchmark tests start ======"
|
||||
|
||||
# Process input arguments
|
||||
OPT_FLAG=""
|
||||
while getopts c: flag; do
|
||||
case ${flag} in
|
||||
c)
|
||||
if [[ ! -z "{OPTARG}" ]]; then
|
||||
OPT_FLAG="${OPT_FLAG} -c ${OPTARG}"
|
||||
fi
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
BENCHMARK_HOOK=${TF_BUILD_BENCHMARK_HOOK:-""}
|
||||
|
||||
|
||||
BENCHMARK_TAG="benchmark-test"
|
||||
BENCHMARK_TESTS=$(bazel query \
|
||||
'attr("tags", "'"${BENCHMARK_TAG}"'", //tensorflow/...)')
|
||||
|
||||
if [[ -z "${BENCHMARK_TESTS}" ]]; then
|
||||
echo "ERROR: Cannot find any benchmark tests with the tag "\
|
||||
"\"${BENCHMARK_TAG}\""
|
||||
exit 1
|
||||
fi
|
||||
|
||||
N_TESTS=$(echo ${BENCHMARK_TESTS} | wc -w)
|
||||
|
||||
echo "Discovered ${N_TESTS} benchmark test(s) with the tag \"${BENCHMARK_TAG}\":"
|
||||
echo ${BENCHMARK_TESTS}
|
||||
echo ""
|
||||
|
||||
PASS_COUNTER=0
|
||||
FAIL_COUNTER=0
|
||||
FAILED_TESTS=""
|
||||
COUNTER=0
|
||||
|
||||
# Iterate through the benchmark tests
|
||||
for BENCHMARK_TEST in ${BENCHMARK_TESTS}; do
|
||||
((COUNTER++))
|
||||
|
||||
echo ""
|
||||
echo "Running benchmark test (${COUNTER} / ${N_TESTS}): ${BENCHMARK_TEST}"
|
||||
|
||||
bazel test ${OPT_FLAG} --cache_test_results=no "${BENCHMARK_TEST}"
|
||||
TEST_RESULT=$?
|
||||
|
||||
# Hook for database
|
||||
# Verify that test log exists
|
||||
TEST_LOG=$(echo ${BENCHMARK_TEST} | sed -e 's/:/\//g')
|
||||
TEST_LOG="bazel-testlogs/${TEST_LOG}/test.log"
|
||||
if [[ -f "${TEST_LOG}" ]]; then
|
||||
echo "Benchmark ${BENCHMARK_TEST} done: log @ ${TEST_LOG}"
|
||||
|
||||
# Call database hook if exists
|
||||
if [[ ! -z "${BENCHMARK_HOOK}" ]]; then
|
||||
# Assume that the hook binary/script takes two arguments:
|
||||
# Argument 1: Compilation flags such as "-c opt" as a whole
|
||||
# Argument 2: Test log containing the serialized TestResults proto
|
||||
|
||||
echo "Calling database hook: ${TF_BUILD_BENCHMARK_LOG_HOOK} "\
|
||||
"${OPT_FLAG} ${TEST_LOG}"
|
||||
|
||||
${TF_BUILD_BENCHMARK_LOG_HOOK} "${OPT_FLAG}" "${TEST_LOG}"
|
||||
else
|
||||
echo "WARNING: No hook binary is specified to handle test log ${TEST_LOG}"
|
||||
fi
|
||||
else
|
||||
# Mark as failure if the test log file cannot be found
|
||||
TEST_RESULT=2
|
||||
|
||||
echo "ERROR: Cannot find log file from benchmark ${BENCHMARK_TEST} @ "\
|
||||
"${TEST_LOG}"
|
||||
fi
|
||||
|
||||
echo ""
|
||||
if [[ ${TEST_RESULT} -eq 0 ]]; then
|
||||
((PASS_COUNTER++))
|
||||
|
||||
echo "Benchmark test PASSED: ${BENCHMARK_TEST}"
|
||||
else
|
||||
((FAIL_COUNTER++))
|
||||
|
||||
FAILED_TESTS="${FAILED_TESTS} ${BENCHMARK_TEST}"
|
||||
|
||||
echo "Benchmark test FAILED: ${BENCHMARK_TEST}"
|
||||
|
||||
if [[ -f "${TEST_LOG}" ]]; then
|
||||
echo "============== BEGINS failure log content =============="
|
||||
cat ${TEST_LOG} >&2
|
||||
echo "============== ENDS failure log content =============="
|
||||
echo ""
|
||||
fi
|
||||
fi
|
||||
|
||||
done
|
||||
|
||||
# Summarize test results
|
||||
echo ""
|
||||
echo "${N_TESTS} Benchmark test(s):" \
|
||||
"${PASS_COUNTER} passed;" \
|
||||
"${FAIL_COUNTER} failed"
|
||||
|
||||
if [[ ${FAIL_COUNTER} -eq 0 ]]; then
|
||||
echo ""
|
||||
echo "Benchmark tests SUCCEEDED"
|
||||
|
||||
exit 0
|
||||
else
|
||||
echo "FAILED benchmark test(s):"
|
||||
FAIL_COUNTER=0
|
||||
for TEST_NAME in ${FAILED_TESTS}; do
|
||||
echo " ${TEST_NAME}"
|
||||
((FAIL_COUNTER++))
|
||||
done
|
||||
|
||||
echo ""
|
||||
echo "Benchmark tests FAILED"
|
||||
exit 1
|
||||
fi
|
@ -34,7 +34,7 @@ getent passwd "${CI_BUILD_UID}" || adduser --gid "${CI_BUILD_GID}" --uid "${CI_B
|
||||
usermod -a -G sudo "${CI_BUILD_USER}"
|
||||
echo "${CI_BUILD_USER} ALL=(ALL) NOPASSWD:ALL" > /etc/sudoers.d/90-nopasswd-sudo
|
||||
|
||||
if [ -e /root/.bazelrc]; then
|
||||
if [ -e /root/.bazelrc ]; then
|
||||
cp /root/.bazelrc "${CI_BUILD_HOME}/.bazelrc"
|
||||
chown "${CI_BUILD_UID}:${CI_BUILD_GID}" "${CI_BUILD_HOME}/.bazelrc"
|
||||
fi
|
||||
|
@ -54,6 +54,10 @@
|
||||
# tutorials tests (Applicable only if TF_BUILD_IS_PIP is
|
||||
# PIP or BOTH).
|
||||
# See builds/test_tutorials.sh
|
||||
# TF_BUILD_RUN_BENCHMARKS:
|
||||
# If set to any non-empty and non-0 value, will perform
|
||||
# the benchmark tests (see *_logged_benchmark targets in
|
||||
# tools/test/BUILD)
|
||||
#
|
||||
# This script can be used by Jenkins parameterized / matrix builds.
|
||||
|
||||
@ -98,6 +102,8 @@ PIP_CMD="${CI_BUILD_DIR}/builds/pip.sh"
|
||||
PIP_TEST_TUTORIALS_FLAG="--test_tutorials"
|
||||
ANDROID_CMD="${CI_BUILD_DIR}/builds/android.sh"
|
||||
|
||||
BENCHMARK_CMD="${CI_BUILD_DIR}/builds/benchmark.sh"
|
||||
|
||||
BAZEL_TARGET="//tensorflow/..."
|
||||
|
||||
TUT_TEST_DATA_DIR="/tmp/tf_tutorial_test_data"
|
||||
@ -129,6 +135,7 @@ echo " TF_BUILD_BAZEL_TARGET=${TF_BUILD_BAZEL_TARGET}"
|
||||
echo " TF_BUILD_BAZEL_CLEAN=${TF_BUILD_BAZEL_CLEAN}"
|
||||
echo " TF_BUILD_SERIAL_TESTS=${TF_BUILD_SERIAL_TESTS}"
|
||||
echo " TF_BUILD_TEST_TUTORIALS=${TF_BUILD_TEST_TUTORIALS}"
|
||||
echo " TF_BUILD_RUN_BENCHMARKS=${TF_BUILD_RUN_BENCHMARKS}"
|
||||
|
||||
# Process container type
|
||||
CTYPE=${TF_BUILD_CONTAINER_TYPE}
|
||||
@ -159,6 +166,13 @@ if [[ -z "$(which docker)" ]]; then
|
||||
|
||||
fi
|
||||
|
||||
# Determine if this is a benchmarks job
|
||||
RUN_BENCHMARKS=0
|
||||
if [[ ! -z "${TF_BUILD_RUN_BENCHMARKS}" ]] &&
|
||||
[[ "${TF_BUILD_RUN_BENCHMARKS}" != "0" ]]; then
|
||||
RUN_BENCHMARKS=1
|
||||
fi
|
||||
|
||||
# Process Bazel "-c opt" flag
|
||||
if [[ ${TF_BUILD_IS_OPT} == "no_opt" ]]; then
|
||||
# PIP builds are done only with the -c opt flag
|
||||
@ -177,6 +191,25 @@ fi
|
||||
# Strip whitespaces from OPT_FLAG
|
||||
OPT_FLAG=$(str_strip "${OPT_FLAG}")
|
||||
|
||||
|
||||
# Filter out benchmark tests if this is not a benchmarks job
|
||||
EXTRA_ARGS=""
|
||||
if [[ "${TF_BUILD_APPEND_ARGUMENTS}" == *"--test_tag_filters="* ]]; then
|
||||
ITEMS=(${TF_BUILD_APPEND_ARGUMENTS})
|
||||
|
||||
for ITEM in "${ITEMS[@]}"; do
|
||||
if [[ ${ITEM} == *"--test_tag_filters="* ]] &&
|
||||
[[ ${ITEM} != *"benchmark-test"* ]]; then
|
||||
EXTRA_ARGS="${EXTRA_ARGS} ${ITEM},-benchmark-test"
|
||||
else
|
||||
EXTRA_ARGS="${EXTRA_ARGS} ${ITEM}"
|
||||
fi
|
||||
done
|
||||
else
|
||||
EXTRA_ARGS="${EXTRA_ARGS} --test_tag_filters=-benchmark-test"
|
||||
fi
|
||||
|
||||
|
||||
# Process PIP install-test option
|
||||
if [[ ${TF_BUILD_IS_PIP} == "no_pip" ]] ||
|
||||
[[ ${TF_BUILD_IS_PIP} == "both" ]]; then
|
||||
@ -188,7 +221,7 @@ if [[ ${TF_BUILD_IS_PIP} == "no_pip" ]] ||
|
||||
if [[ ${CTYPE} == "cpu" ]] || [[ ${CTYPE} == "gpu" ]]; then
|
||||
# Run Bazel
|
||||
NO_PIP_MAIN_CMD="${MAIN_CMD} ${BAZEL_CMD} ${OPT_FLAG} "\
|
||||
"${TF_BUILD_APPEND_ARGUMENTS} ${BAZEL_TARGET}"
|
||||
"${EXTRA_ARGS} ${BAZEL_TARGET}"
|
||||
NO_PIP_MAIN_CMD=$(str_strip "${NO_PIP_MAIN_CMD}")
|
||||
|
||||
if [[ ! -z "${TF_BUILD_SERIAL_TESTS}" ]] &&
|
||||
@ -198,12 +231,12 @@ if [[ ${TF_BUILD_IS_PIP} == "no_pip" ]] ||
|
||||
# But the 2nd (test) step will be done serially.
|
||||
|
||||
BUILD_ONLY_CMD="${BAZEL_BUILD_ONLY_CMD} ${OPT_FLAG} "\
|
||||
"${TF_BUILD_APPEND_ARGUMENTS} ${BAZEL_TARGET}"
|
||||
"${EXTRA_ARGS} ${BAZEL_TARGET}"
|
||||
echo "Build-only command: ${BUILD_ONLY_CMD}"
|
||||
|
||||
NO_PIP_MAIN_CMD="${BUILD_ONLY_CMD} && "\
|
||||
"${BAZEL_CMD} ${OPT_FLAG} ${BAZEL_SERIAL_FLAG} "\
|
||||
"${TF_BUILD_APPEND_ARGUMENTS} ${BAZEL_TARGET}"
|
||||
"${EXTRA_ARGS} ${BAZEL_TARGET}"
|
||||
echo "Parallel-build + serial-test command: ${NO_PIP_MAIN_CMD}"
|
||||
fi
|
||||
elif [[ ${CTYPE} == "android" ]]; then
|
||||
@ -221,8 +254,7 @@ if [[ ${TF_BUILD_IS_PIP} == "pip" ]] ||
|
||||
exit 0
|
||||
fi
|
||||
|
||||
PIP_MAIN_CMD="${MAIN_CMD} ${PIP_CMD} ${CTYPE} "\
|
||||
"${TF_BUILD_APPEND_ARGUMENTS}"
|
||||
PIP_MAIN_CMD="${MAIN_CMD} ${PIP_CMD} ${CTYPE} ${EXTRA_AGRS}"
|
||||
|
||||
# Add command for tutorial test
|
||||
if [[ ! -z "${TF_BUILD_TEST_TUTORIALS}" ]] &&
|
||||
@ -240,7 +272,10 @@ if [[ ${TF_BUILD_IS_PIP} == "pip" ]] ||
|
||||
fi
|
||||
fi
|
||||
|
||||
if [[ ${TF_BUILD_IS_PIP} == "no_pip" ]]; then
|
||||
|
||||
if [[ ${RUN_BENCHMARKS} == "1" ]]; then
|
||||
MAIN_CMD="${BENCHMARK_CMD} ${OPT_FLAG}"
|
||||
elif [[ ${TF_BUILD_IS_PIP} == "no_pip" ]]; then
|
||||
MAIN_CMD="${NO_PIP_MAIN_CMD}"
|
||||
elif [[ ${TF_BUILD_IS_PIP} == "pip" ]]; then
|
||||
MAIN_CMD="${PIP_MAIN_CMD}"
|
||||
@ -250,7 +285,6 @@ else
|
||||
die "Unrecognized value in TF_BUILD_IS_PIP: \"${TF_BUILD_IS_PIP}\""
|
||||
fi
|
||||
|
||||
|
||||
# Process Python version
|
||||
if [[ ${TF_BUILD_PYTHON_VERSION} == "python2" ]]; then
|
||||
:
|
||||
@ -284,8 +318,7 @@ EXTRA_PARAMS="${EXTRA_PARAMS} ${TF_BUILD_APPEND_CI_DOCKER_EXTRA_PARAMS}"
|
||||
# TF_BUILD_SERIAL_TESTS=1), are written to a bash script, which is
|
||||
# then called. The name of the script is randomized to make concurrent
|
||||
# builds on the node possible.
|
||||
RAND_STR=$(cat /dev/urandom | tr -dc 'a-zA-Z0-9' | fold -w 8 | head -n 1)
|
||||
TMP_SCRIPT=/tmp/ci_parameterized_build_${RAND_STR}.sh
|
||||
TMP_SCRIPT="$(mktemp)_ci_parameterized_build.sh"
|
||||
|
||||
if [[ "${DO_DOCKER}" == "1" ]]; then
|
||||
# Map the tmp script into the Docker container
|
||||
|
@ -18,3 +18,9 @@ set -e
|
||||
|
||||
pip install sklearn
|
||||
pip3 install scikit-learn
|
||||
|
||||
# Benchmark tests require the following:
|
||||
pip install psutil
|
||||
pip3 install psutil
|
||||
pip install py-cpuinfo
|
||||
pip3 install py-cpuinfo
|
||||
|
@ -159,7 +159,7 @@
|
||||
" \n",
|
||||
" yhat = tf.matmul(input, weights)\n",
|
||||
" yerror = tf.sub(yhat, target)\n",
|
||||
" loss = tf.reduce_mean(tf.nn.l2_loss(yerror))\n",
|
||||
" loss = tf.nn.l2_loss(yerror)\n",
|
||||
" \n",
|
||||
" update_weights = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)\n",
|
||||
" \n",
|
||||
@ -601,7 +601,7 @@
|
||||
" # Our target is the y values. They need to be massaged to the right shape.\n",
|
||||
" target = tf.constant(np.transpose([y]).astype(np.float32))\n",
|
||||
" # Weights are a variable. They change every time through the loop.\n",
|
||||
" # Weights are initialized to random values (gaussian, mean 0, stdev 1)\n",
|
||||
" # Weights are initialized to random values (gaussian, mean 0, stdev 0.1)\n",
|
||||
" weights = tf.Variable(tf.random_normal([2, 1], 0, 0.1))\n",
|
||||
"\n",
|
||||
" # Initialize all the variables defined above.\n",
|
||||
@ -617,7 +617,7 @@
|
||||
" # We are going to minimize the L2 loss. The L2 loss is the sum of the\n",
|
||||
" # squared error for all our estimates of y. This penalizes large errors\n",
|
||||
" # a lot, but small errors only a little.\n",
|
||||
" loss = tf.reduce_mean(tf.nn.l2_loss(yerror))\n",
|
||||
" loss = tf.nn.l2_loss(yerror)\n",
|
||||
"\n",
|
||||
" # Perform gradient descent. \n",
|
||||
" # This essentially just updates weights, like weights += grads * mu\n",
|
||||
@ -824,9 +824,9 @@
|
||||
"\n",
|
||||
"The first line calculates the L2 loss manually. It's the same as `l2_loss(yerror)`, which is half of the sum of the squared error, so $\\frac{1}{2} \\sum (\\hat{y} - y)^2$. With this code, you can see exactly what the `l2_loss` operation does. It's the total of all the squared differences between the target and our estimates. And minimizing the L2 loss will minimize how much our estimates of $y$ differ from the true values of $y$.\n",
|
||||
"\n",
|
||||
"The second line calculates $\\sum{x_i (\\hat{y} - y)}$. What is that? It's the partial derivative of the L2 loss, the same thing as what `gradients(loss, weights)` does in the earlier code. Not sure about that? Let's look at it in more detail. The gradient calculation is going to get the partial derivatives of loss with respect to each of the weights so we can change those weights in the direction that will reduce the loss. L2 loss is $\\frac{1}{2} \\sum (\\hat{y} - y)^2$, where $\\hat{y} = w_2 x + w_1$. So, using the chain rule and substituting in for $\\hat{y}$ in the derivative, $\\frac{\\partial}{\\partial w_i} = \\sum{(\\hat{y} - y)\\, x_i}$. `GradientDescentOptimizer` does these calculations automatically for you based on the graph structure.\n",
|
||||
"The second line calculates $\\begin{bmatrix}\\sum{(\\hat{y} - y)*1} \\\\ \\sum{(\\hat{y} - y)*x_i}\\end{bmatrix}$. What is that? It's the partial derivatives of the L2 loss with respect to $w_1$ and $w_2$, the same thing as what `gradients(loss, weights)` does in the earlier code. Not sure about that? Let's look at it in more detail. The gradient calculation is going to get the partial derivatives of loss with respect to each of the weights so we can change those weights in the direction that will reduce the loss. L2 loss is $\\frac{1}{2} \\sum (\\hat{y} - y)^2$, where $\\hat{y} = w_2 x + w_1$. So, using the chain rule and substituting in for $\\hat{y}$ in the derivative, $\\frac{\\partial}{\\partial w_2} = \\sum{(\\hat{y} - y)\\, *x_i}$ and $\\frac{\\partial}{\\partial w_1} = \\sum{(\\hat{y} - y)\\, *1}$. `GradientDescentOptimizer` does these calculations automatically for you based on the graph structure.\n",
|
||||
"\n",
|
||||
"The third line is equivalent to `weights -= mu * gradient`, so it subtracts a constant the gradient after scaling by the learning rate (to avoid jumping too far each time, which risks moving in the wrong direction). It's also the same thing that `GradientDescentOptimizer(learning_rate).minimize(loss)` does in the earlier code. Gradient descient updates its first parameter based on the values in the second after scaling by the third, so it's equivalent to the `assign_sub(weights, mu * gradient)`.\n",
|
||||
"The third line is equivalent to `weights -= mu * gradient`, so it subtracts a constant the gradient after scaling by the learning rate (to avoid jumping too far each time, which risks moving in the wrong direction). It's also the same thing that `GradientDescentOptimizer(learning_rate).minimize(loss)` does in the earlier code. Gradient descent updates its first parameter based on the values in the second after scaling by the third, so it's equivalent to the `assign_sub(weights, mu * gradient)`.\n",
|
||||
"\n",
|
||||
"Hopefully, this other code gives you a better understanding of what the operations we used previously are actually doing. In practice, you'll want to use those high level operators most of the time rather than calculating things yourself. For this toy example and simple network, it's not too bad to compute and apply the gradients yourself from scratch, but things get more complicated with larger networks."
|
||||
]
|
||||
|
@ -14,4 +14,12 @@
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
swig "$@"
|
||||
# If possible, read swig path out of "swig_path" generated by configure
|
||||
SWIG=swig
|
||||
SWIG_PATH=tensorflow/tools/swig/swig_path
|
||||
if [ -e $SWIG_PATH ]; then
|
||||
SWIG=`cat $SWIG_PATH`
|
||||
fi
|
||||
|
||||
# If this line fails, rerun configure to set the path to swig correctly
|
||||
"$SWIG" "$@"
|
||||
|
@ -3,7 +3,11 @@
|
||||
|
||||
package(default_visibility = ["//tensorflow:internal"])
|
||||
|
||||
load("//tensorflow:tensorflow.bzl", "cuda_py_test")
|
||||
load(
|
||||
"//tensorflow/tools/test:performance.bzl",
|
||||
"tf_cc_logged_benchmark",
|
||||
"tf_py_logged_benchmark",
|
||||
)
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
@ -69,6 +73,16 @@ py_binary(
|
||||
# main = "run_and_gather_logs.py",
|
||||
#)
|
||||
|
||||
tf_cc_logged_benchmark(
|
||||
name = "cast_op_benchmark",
|
||||
target = "//tensorflow/core/kernels:cast_op_test",
|
||||
)
|
||||
|
||||
tf_py_logged_benchmark(
|
||||
name = "rnn_op_benchmark",
|
||||
target = "//tensorflow/python:rnn_test",
|
||||
)
|
||||
|
||||
filegroup(
|
||||
name = "all_files",
|
||||
srcs = glob(
|
||||
|
56
tensorflow/tools/test/performance.bzl
Normal file
56
tensorflow/tools/test/performance.bzl
Normal file
@ -0,0 +1,56 @@
|
||||
# -*- Python -*-
|
||||
|
||||
load("//tensorflow:tensorflow.bzl", "tf_py_test")
|
||||
|
||||
# Create a benchmark test target of a TensorFlow C++ test (tf_cc_*_test)
|
||||
def tf_cc_logged_benchmark(
|
||||
name=None,
|
||||
target=None,
|
||||
benchmarks="..",
|
||||
tags=[],
|
||||
test_log_output_prefix=""):
|
||||
if not name:
|
||||
fail("Must provide a name")
|
||||
if not target:
|
||||
fail("Must provide a target")
|
||||
if (not ":" in target
|
||||
or not target.startswith("//")
|
||||
or target.endswith(":all")
|
||||
or target.endswith(".")):
|
||||
fail(" ".join(("Target must be a single well-defined test, e.g.,",
|
||||
"//path/to:test. Received: %s" % target)))
|
||||
|
||||
all_tags = list(set(tags) + \
|
||||
set(["benchmark-test", "local", "regression-test"]))
|
||||
|
||||
tf_py_test(
|
||||
name = name,
|
||||
tags = all_tags,
|
||||
srcs = ["//tensorflow/tools/test:run_and_gather_logs.py"],
|
||||
args = [
|
||||
"--test_name=" + target
|
||||
],
|
||||
data = [
|
||||
target,
|
||||
],
|
||||
main = "run_and_gather_logs.py",
|
||||
additional_deps = [
|
||||
"//tensorflow/tools/test:run_and_gather_logs"
|
||||
])
|
||||
|
||||
# Create a benchmark test target of a TensorFlow python test (*py_tests)
|
||||
def tf_py_logged_benchmark(
|
||||
name=None,
|
||||
target=None,
|
||||
benchmarks="..",
|
||||
tags=[],
|
||||
test_log_output_prefix=""):
|
||||
# For now generating a py benchmark is the same as generating a C++
|
||||
# benchmark target. In the future this may change, so we have
|
||||
# two macros just in case
|
||||
tf_cc_logged_benchmark(
|
||||
name=name,
|
||||
target=target,
|
||||
benchmarks=benchmarks,
|
||||
tags=tags,
|
||||
test_log_output_prefix=test_log_output_prefix)
|
@ -44,6 +44,7 @@ from google.protobuf import text_format
|
||||
from tensorflow.core.util import test_log_pb2
|
||||
from tensorflow.tools.test import run_and_gather_logs_lib
|
||||
|
||||
|
||||
FLAGS = tf.app.flags.FLAGS
|
||||
|
||||
tf.app.flags.DEFINE_string("test_name", "", """Test target to run.""")
|
||||
@ -92,7 +93,7 @@ def main(unused_args):
|
||||
else:
|
||||
output_path = os.path.abspath(FLAGS.test_log_output)
|
||||
tf.gfile.GFile(output_path, "w").write(serialized_test_results)
|
||||
print("Test results written to: %s" % output_path)
|
||||
tf.logging.info("Test results written to: %s" % output_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -28,16 +28,48 @@ import time
|
||||
import tensorflow as tf
|
||||
|
||||
from google.protobuf import text_format
|
||||
|
||||
from tensorflow.core.util import test_log_pb2
|
||||
from tensorflow.tools.test import system_info_lib
|
||||
|
||||
|
||||
def get_git_commit_sha():
|
||||
"""Get git commit SHA for this build.
|
||||
|
||||
Attempt to get the SHA from environment variable GIT_COMMIT, which should
|
||||
be available on Jenkins build agents.
|
||||
|
||||
Returns:
|
||||
SHA hash of the git commit used for the build, if available
|
||||
"""
|
||||
|
||||
return os.getenv("GIT_COMMIT")
|
||||
|
||||
|
||||
def process_test_logs(test_name, test_args, start_time, run_time, log_files):
|
||||
"""Gather test information and put it in a TestResults proto.
|
||||
|
||||
Args:
|
||||
test_name: A unique bazel target, e.g. "//path/to:test"
|
||||
test_args: A string containing all arguments to run the target with.
|
||||
|
||||
start_time: Test starting time (epoch)
|
||||
run_time: Wall time that the test ran for
|
||||
log_files: Paths to the log files
|
||||
|
||||
Returns:
|
||||
A TestResults proto
|
||||
"""
|
||||
|
||||
results = test_log_pb2.TestResults()
|
||||
results.target = test_name
|
||||
results.start_time = start_time
|
||||
results.run_time = run_time
|
||||
|
||||
# Gather source code information
|
||||
git_sha = get_git_commit_sha()
|
||||
if git_sha:
|
||||
results.commit_id.hash = git_sha
|
||||
|
||||
results.entries.CopyFrom(process_benchmarks(log_files))
|
||||
results.run_configuration.argument.extend(test_args)
|
||||
results.machine_configuration.CopyFrom(
|
||||
|
@ -6,7 +6,7 @@
|
||||
def tf_workspace(path_prefix = "", tf_repo_name = ""):
|
||||
native.new_http_archive(
|
||||
name = "gmock_archive",
|
||||
url = "https://googlemock.googlecode.com/files/gmock-1.7.0.zip",
|
||||
url = "https://archive.openswitch.net/gmock-1.7.0.zip",
|
||||
sha256 = "26fcbb5925b74ad5fc8c26b0495dfc96353f4d553492eb97e85a8a6d2f43095b",
|
||||
build_file = path_prefix + "google/protobuf/gmock.BUILD",
|
||||
)
|
||||
@ -43,8 +43,8 @@ def tf_workspace(path_prefix = "", tf_repo_name = ""):
|
||||
|
||||
native.new_http_archive(
|
||||
name = "png_archive",
|
||||
url = "https://storage.googleapis.com/libpng-public-archive/libpng-1.2.53.tar.gz",
|
||||
sha256 = "e05c9056d7f323088fd7824d8c6acc03a4a758c4b4916715924edc5dd3223a72",
|
||||
url = "https://github.com/glennrp/libpng/archive/v1.2.53.zip",
|
||||
sha256 = "c35bcc6387495ee6e757507a68ba036d38ad05b415c2553b3debe2a57647a692",
|
||||
build_file = path_prefix + "png.BUILD",
|
||||
)
|
||||
|
||||
@ -74,7 +74,7 @@ def tf_workspace(path_prefix = "", tf_repo_name = ""):
|
||||
|
||||
native.git_repository(
|
||||
name = "grpc",
|
||||
commit = "73979f4",
|
||||
commit = "3d62fc6",
|
||||
init_submodules = True,
|
||||
remote = "https://github.com/grpc/grpc.git",
|
||||
)
|
||||
|
4
third_party/gpus/crosstool/CROSSTOOL
vendored
4
third_party/gpus/crosstool/CROSSTOOL
vendored
@ -10,6 +10,10 @@ default_toolchain {
|
||||
cpu: "piii"
|
||||
toolchain_identifier: "local_linux"
|
||||
}
|
||||
default_toolchain {
|
||||
cpu: "arm"
|
||||
toolchain_identifier: "local_linux"
|
||||
}
|
||||
default_toolchain {
|
||||
cpu: "darwin"
|
||||
toolchain_identifier: "local_darwin"
|
||||
|
@ -43,14 +43,16 @@ import re
|
||||
import sys
|
||||
import pipes
|
||||
|
||||
CURRENT_DIR = os.path.dirname(sys.argv[0])
|
||||
# "configure" uses the specific format to substitute the following string.
|
||||
# If you change it, make sure you modify "configure" as well.
|
||||
CPU_COMPILER = ('/usr/bin/gcc')
|
||||
NVCC_PATH = CURRENT_DIR + '/../../../cuda/bin/nvcc'
|
||||
GCC_HOST_COMPILER_PATH = ('/usr/bin/gcc')
|
||||
|
||||
CURRENT_DIR = os.path.dirname(sys.argv[0])
|
||||
NVCC_PATH = CURRENT_DIR + '/../../../cuda/bin/nvcc'
|
||||
LLVM_HOST_COMPILER_PATH = ('/usr/bin/gcc')
|
||||
PREFIX_DIR = os.path.dirname(GCC_HOST_COMPILER_PATH)
|
||||
|
||||
|
||||
def Log(s):
|
||||
print 'gpus/crosstool: {0}'.format(s)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user