[Grappler] Remove several gratuitous graph and function library copies from the Grappler-related callstacks in TensorFlow.
This reduces the time spent optimizing a particular model I am benchmarking by about 8%. PiperOrigin-RevId: 299457198 Change-Id: I46688f3e215f5ab9ec55520d0ef324e04aa49e31
This commit is contained in:
parent
33f9e8d283
commit
8054b80990
@ -732,8 +732,9 @@ Status GraphExecutionState::OptimizeGraph(
|
||||
}
|
||||
grappler::VirtualCluster cluster(device_set_);
|
||||
GraphDef new_graph;
|
||||
TF_RETURN_IF_ERROR(grappler::RunMetaOptimizer(
|
||||
item, session_options_->config, cpu_device, &cluster, &new_graph));
|
||||
TF_RETURN_IF_ERROR(
|
||||
grappler::RunMetaOptimizer(std::move(item), session_options_->config,
|
||||
cpu_device, &cluster, &new_graph));
|
||||
|
||||
// Merge optimized graph function library with an original library.
|
||||
// Optimized graph might have new functions specialized for it's
|
||||
|
@ -58,6 +58,12 @@ class GraphOptimizer {
|
||||
virtual Status Optimize(Cluster* cluster, const GrapplerItem& item,
|
||||
GraphDef* optimized_graph) = 0;
|
||||
|
||||
// Subclasses may define a version of Optimize that consumes item.
|
||||
virtual Status Optimize(Cluster* cluster, GrapplerItem&& item,
|
||||
GraphDef* optimized_graph) {
|
||||
return Optimize(cluster, item, optimized_graph);
|
||||
}
|
||||
|
||||
// Method invoked by the framework so that it can provide feedback
|
||||
// on how well the "optimized_graph" (produced as *optimized_graph from a
|
||||
// call to Optimize) performed. Lower "result" scores are better.
|
||||
|
@ -379,7 +379,7 @@ void MetaOptimizer::InitializeVerifiers(
|
||||
}
|
||||
}
|
||||
|
||||
Status MetaOptimizer::OptimizeGraph(Cluster* cluster, const GrapplerItem& item,
|
||||
Status MetaOptimizer::OptimizeGraph(Cluster* cluster, GrapplerItem&& item,
|
||||
GraphDef* optimized_graph) {
|
||||
int min_graph_nodes = cfg_.min_graph_nodes() == 0 ? kDefaultMinGraphNodes
|
||||
: cfg_.min_graph_nodes();
|
||||
@ -426,8 +426,8 @@ Status MetaOptimizer::OptimizeGraph(Cluster* cluster, const GrapplerItem& item,
|
||||
|
||||
// Invariant: optimized_graph contains the most recently optimized version of
|
||||
// the graph.
|
||||
GrapplerItem optimized_item = item;
|
||||
optimized_graph->Swap(&optimized_item.graph);
|
||||
auto original_producer = item.graph.versions().producer();
|
||||
optimized_graph->Swap(&item.graph);
|
||||
|
||||
GraphOptimizationResult optimization_result(item.id);
|
||||
GraphOptimizer* sa_optimizer = nullptr;
|
||||
@ -465,7 +465,7 @@ Status MetaOptimizer::OptimizeGraph(Cluster* cluster, const GrapplerItem& item,
|
||||
continue;
|
||||
}
|
||||
|
||||
TF_RETURN_IF_ERROR(RunOptimizer(optimizer.get(), cluster, &optimized_item,
|
||||
TF_RETURN_IF_ERROR(RunOptimizer(optimizer.get(), cluster, &item,
|
||||
optimized_graph, &optimization_result));
|
||||
|
||||
if (iteration == 0 && optimizer->name() == "model_pruner") {
|
||||
@ -498,7 +498,7 @@ Status MetaOptimizer::OptimizeGraph(Cluster* cluster, const GrapplerItem& item,
|
||||
|
||||
// ScopedAllocatorOptimizer must run last.
|
||||
if (sa_optimizer != nullptr) {
|
||||
TF_RETURN_IF_ERROR(RunOptimizer(sa_optimizer, cluster, &optimized_item,
|
||||
TF_RETURN_IF_ERROR(RunOptimizer(sa_optimizer, cluster, &item,
|
||||
optimized_graph, &optimization_result));
|
||||
GRAPPLER_RETURN_IF_DEADLINE_EXCEEDED();
|
||||
}
|
||||
@ -516,8 +516,7 @@ Status MetaOptimizer::OptimizeGraph(Cluster* cluster, const GrapplerItem& item,
|
||||
TF_RETURN_IF_ERROR(TopologicalSort(optimized_graph));
|
||||
ReassignColocation(optimized_graph);
|
||||
// Make sure that the optimizers preserved the graph version.
|
||||
DCHECK_EQ(optimized_graph->versions().producer(),
|
||||
item.graph.versions().producer());
|
||||
DCHECK_EQ(optimized_graph->versions().producer(), original_producer);
|
||||
}
|
||||
|
||||
return Status::OK();
|
||||
@ -590,8 +589,8 @@ Status MetaOptimizer::RunOptimizer(
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status MetaOptimizer::Optimize(Cluster* cluster, const GrapplerItem& item,
|
||||
GraphDef* optimized_graph) {
|
||||
Status MetaOptimizer::OptimizeConsumeItem(Cluster* cluster, GrapplerItem&& item,
|
||||
GraphDef* optimized_graph) {
|
||||
VLOG(1) << "Starting optimization for grappler item: " << item.id;
|
||||
optimization_results_.clear();
|
||||
|
||||
@ -609,21 +608,21 @@ Status MetaOptimizer::Optimize(Cluster* cluster, const GrapplerItem& item,
|
||||
// remove all the unreachable functions.
|
||||
// TODO(ezhulenev): Construct reachable function library definition directly
|
||||
// from the proto without constructing temporary FunctionLibraryDefinition.
|
||||
GraphDef trimmed_graph; // do not copy graph with a potentially huge library
|
||||
*trimmed_graph.mutable_node() = item.graph.node();
|
||||
*trimmed_graph.mutable_versions() = item.graph.versions();
|
||||
*trimmed_graph.mutable_library() = minimized_flib(item.graph).ToProto();
|
||||
|
||||
GrapplerItem trimmed_item = item.WithGraph(std::move(trimmed_graph));
|
||||
*item.graph.mutable_library() = minimized_flib(item.graph).ToProto();
|
||||
|
||||
VLOG(1) << absl::Substitute(
|
||||
"Deleted $0 unreachable functions from the graph (library size = $1)",
|
||||
item.graph.library().function_size() -
|
||||
trimmed_item.graph.library().function_size(),
|
||||
trimmed_item.graph.library().function_size());
|
||||
item.graph.library().function_size(),
|
||||
item.graph.library().function_size());
|
||||
|
||||
// Save a few small fields from item before we move it.
|
||||
bool optimize_function_library =
|
||||
item.optimization_options().optimize_function_library;
|
||||
const auto producer = item.graph.versions().producer();
|
||||
|
||||
// 1. Optimize main graph
|
||||
TF_RETURN_IF_ERROR(OptimizeGraph(cluster, trimmed_item, optimized_graph));
|
||||
TF_RETURN_IF_ERROR(OptimizeGraph(cluster, std::move(item), optimized_graph));
|
||||
VLOG(1) << "Optimized main graph.";
|
||||
GRAPPLER_RETURN_IF_DEADLINE_EXCEEDED();
|
||||
|
||||
@ -675,9 +674,6 @@ Status MetaOptimizer::Optimize(Cluster* cluster, const GrapplerItem& item,
|
||||
|
||||
// Optimize each function only once.
|
||||
absl::flat_hash_set<string> optimized_funcs;
|
||||
bool optimize_function_library =
|
||||
item.optimization_options().optimize_function_library;
|
||||
|
||||
while (optimize_function_library) {
|
||||
optimize_function_library = false;
|
||||
|
||||
@ -711,8 +707,8 @@ Status MetaOptimizer::Optimize(Cluster* cluster, const GrapplerItem& item,
|
||||
|
||||
// Make a GrapplerItem from a FunctionDef.
|
||||
GrapplerFunctionItem func_item;
|
||||
TF_RETURN_IF_ERROR(MakeGrapplerFunctionItem(
|
||||
func, flib, trimmed_item.graph.versions().producer(), &func_item));
|
||||
TF_RETURN_IF_ERROR(
|
||||
MakeGrapplerFunctionItem(func, flib, producer, &func_item));
|
||||
|
||||
// If we need to compute the gradient of optimized function at runtime, we
|
||||
// can't perform non-differentiable rewrites.
|
||||
@ -760,8 +756,9 @@ Status MetaOptimizer::Optimize(Cluster* cluster, const GrapplerItem& item,
|
||||
TF_RETURN_IF_ERROR(implementation_selector.Optimize(
|
||||
cluster, func_item, &optimized_func_graph));
|
||||
} else {
|
||||
TF_RETURN_IF_ERROR(
|
||||
OptimizeGraph(cluster, func_item, &optimized_func_graph));
|
||||
GrapplerFunctionItem func_item_copy = func_item;
|
||||
TF_RETURN_IF_ERROR(OptimizeGraph(cluster, std::move(func_item_copy),
|
||||
&optimized_func_graph));
|
||||
}
|
||||
|
||||
// Function body optimization might have created new specialized
|
||||
@ -834,13 +831,14 @@ bool MetaOptimizerEnabled(const ConfigProto& cfg) {
|
||||
!rewrite_cfg.custom_optimizers().empty();
|
||||
}
|
||||
|
||||
Status RunMetaOptimizer(const GrapplerItem& item, const ConfigProto& cfg,
|
||||
Status RunMetaOptimizer(GrapplerItem&& item, const ConfigProto& cfg,
|
||||
DeviceBase* cpu_device, Cluster* cluster,
|
||||
GraphDef* optimized_graph) {
|
||||
MetaOptimizer optimizer(cpu_device, cfg);
|
||||
optimizer.set_deadline_usec(
|
||||
DeadlineMicroSeconds(cfg.graph_options().rewrite_options()));
|
||||
return optimizer.Optimize(cluster, item, optimized_graph);
|
||||
return optimizer.OptimizeConsumeItem(cluster, std::move(item),
|
||||
optimized_graph);
|
||||
}
|
||||
|
||||
Status OptimizeGraph(
|
||||
@ -883,7 +881,7 @@ Status OptimizeGraph(
|
||||
// TODO(nareshmodi): Consider adding and using the more generic GraphOptions
|
||||
// proto (which also contain the OptimizerOptions).
|
||||
TF_RETURN_IF_ERROR(tensorflow::grappler::RunMetaOptimizer(
|
||||
item, config_proto, cpu_device, &cluster, &out_graph));
|
||||
std::move(item), config_proto, cpu_device, &cluster, &out_graph));
|
||||
|
||||
std::unique_ptr<tensorflow::Graph> optimized_graph(
|
||||
new tensorflow::Graph(OpRegistry::Global()));
|
||||
|
@ -42,7 +42,13 @@ class MetaOptimizer : public GraphOptimizer {
|
||||
bool UsesFunctionLibrary() const override { return true; }
|
||||
|
||||
Status Optimize(Cluster* cluster, const GrapplerItem& item,
|
||||
GraphDef* optimized_graph) override;
|
||||
GraphDef* optimized_graph) override {
|
||||
GrapplerItem copy(item);
|
||||
return OptimizeConsumeItem(cluster, std::move(copy), optimized_graph);
|
||||
}
|
||||
|
||||
Status OptimizeConsumeItem(Cluster* cluster, GrapplerItem&& item,
|
||||
GraphDef* optimized_graph);
|
||||
|
||||
void PrintResult();
|
||||
|
||||
@ -77,7 +83,7 @@ class MetaOptimizer : public GraphOptimizer {
|
||||
|
||||
// Run optimization pass over a single GrapplerItem. Meta optimizer might run
|
||||
// multiple such passes: 1) for the main graph 2) for the function library
|
||||
Status OptimizeGraph(Cluster* cluster, const GrapplerItem& item,
|
||||
Status OptimizeGraph(Cluster* cluster, GrapplerItem&& item,
|
||||
GraphDef* optimized_graph);
|
||||
|
||||
DeviceBase* const cpu_device_; // may be NULL
|
||||
@ -111,7 +117,7 @@ bool MetaOptimizerEnabled(const ConfigProto& cfg);
|
||||
// during constant folding; if NULL, a new device is created for doing constant
|
||||
// folding. For performance, it is recommended to pass in an existing cpu_device
|
||||
// when possible.
|
||||
Status RunMetaOptimizer(const GrapplerItem& item, const ConfigProto& cfg,
|
||||
Status RunMetaOptimizer(GrapplerItem&& item, const ConfigProto& cfg,
|
||||
DeviceBase* cpu_device, Cluster* cluster,
|
||||
GraphDef* optimized_graph);
|
||||
|
||||
|
@ -722,12 +722,13 @@ TEST_F(MetaOptimizerTest, OptimizerTimesOut) {
|
||||
rewriter_config.set_meta_optimizer_iterations(RewriterConfig::ONE);
|
||||
|
||||
GraphDef output;
|
||||
GraphDef original = item.graph;
|
||||
const Status status =
|
||||
RunMetaOptimizer(item, config, nullptr, nullptr, &output);
|
||||
RunMetaOptimizer(std::move(item), config, nullptr, nullptr, &output);
|
||||
EXPECT_EQ(status.error_message(), "meta_optimizer exceeded deadline.");
|
||||
// Make sure the graph was reverted to the original regardless of when the
|
||||
// optimizer timed out.
|
||||
CompareGraphs(item.graph, output);
|
||||
CompareGraphs(original, output);
|
||||
}
|
||||
|
||||
TEST_F(MetaOptimizerTest, MetaOptimizerTimesOut) {
|
||||
@ -744,11 +745,12 @@ TEST_F(MetaOptimizerTest, MetaOptimizerTimesOut) {
|
||||
rewriter_config.set_meta_optimizer_iterations(RewriterConfig::TWO);
|
||||
|
||||
GraphDef output;
|
||||
const int original_node_size = item.graph.node_size();
|
||||
const Status status =
|
||||
RunMetaOptimizer(item, config, nullptr, nullptr, &output);
|
||||
RunMetaOptimizer(std::move(item), config, nullptr, nullptr, &output);
|
||||
EXPECT_EQ(status.error_message(), "meta_optimizer exceeded deadline.");
|
||||
// The meta optimizer should manage to finish one iteration.
|
||||
EXPECT_EQ(item.graph.node_size() + 1, output.node_size());
|
||||
EXPECT_EQ(original_node_size + 1, output.node_size());
|
||||
}
|
||||
|
||||
TEST_F(MetaOptimizerTest, OptimizerDoesNotTimeOut) {
|
||||
@ -764,11 +766,12 @@ TEST_F(MetaOptimizerTest, OptimizerDoesNotTimeOut) {
|
||||
rewriter_config.set_meta_optimizer_timeout_ms(2500);
|
||||
rewriter_config.set_meta_optimizer_iterations(RewriterConfig::TWO);
|
||||
GraphDef output;
|
||||
const int original_node_size = item.graph.node_size();
|
||||
const Status status =
|
||||
RunMetaOptimizer(item, config, nullptr, nullptr, &output);
|
||||
RunMetaOptimizer(std::move(item), config, nullptr, nullptr, &output);
|
||||
TF_EXPECT_OK(status);
|
||||
// The meta optimizer should manage to finish two iterations.
|
||||
EXPECT_EQ(item.graph.node_size() + 2, output.node_size());
|
||||
EXPECT_EQ(original_node_size + 2, output.node_size());
|
||||
}
|
||||
|
||||
TEST_F(MetaOptimizerTest, RunPostOptimizationVerifiersOnValidGraph) {
|
||||
|
@ -126,7 +126,7 @@ Status ApplyRewrites(OpKernelContext* ctx,
|
||||
tensorflow::ConfigProto config;
|
||||
*config.mutable_graph_options()->mutable_rewrite_options() = config_factory();
|
||||
TF_RETURN_IF_ERROR(tensorflow::grappler::RunMetaOptimizer(
|
||||
*grappler_item, config, ctx->device(), &cluster, graph_def));
|
||||
std::move(*grappler_item), config, ctx->device(), &cluster, graph_def));
|
||||
|
||||
// Remove fake sinks after optimizations are done.
|
||||
//
|
||||
|
Loading…
Reference in New Issue
Block a user