diff --git a/tensorflow/lite/experimental/examples/lstm/BUILD b/tensorflow/lite/experimental/examples/lstm/BUILD index 719e59c6a8c..cb5a98e4078 100644 --- a/tensorflow/lite/experimental/examples/lstm/BUILD +++ b/tensorflow/lite/experimental/examples/lstm/BUILD @@ -111,7 +111,6 @@ py_test( tags = [ "no_oss", "no_pip", - "notap", # b/141373014 ], deps = [ ":rnn", diff --git a/tensorflow/lite/experimental/examples/lstm/bidirectional_sequence_rnn_test.py b/tensorflow/lite/experimental/examples/lstm/bidirectional_sequence_rnn_test.py index 00fdb4a2f96..2f0a7821572 100644 --- a/tensorflow/lite/experimental/examples/lstm/bidirectional_sequence_rnn_test.py +++ b/tensorflow/lite/experimental/examples/lstm/bidirectional_sequence_rnn_test.py @@ -297,33 +297,6 @@ class BidirectionalSequenceRnnTest(test_util.TensorFlowTestCase): result = self.tfliteInvoke(new_sess, test_inputs, x, output_class, False) self.assertTrue(np.allclose(expected_output, result, rtol=1e-6, atol=1e-2)) - def testStaticRnnMultiRnnCellWithSequenceLength(self): - sess = tf.compat.v1.Session() - - x, prediction, output_class = self.buildModel( - self.buildRnnLayer(), - self.buildRnnLayer(), - False, - is_inference=False, - use_sequence_length=True) - self.trainModel(x, prediction, output_class, sess) - - saver = tf.train.Saver() - x, prediction, output_class, new_sess = self.saveAndRestoreModel( - self.buildRnnLayer(), - self.buildRnnLayer(), - sess, - saver, - False, - use_sequence_length=True) - - test_inputs, expected_output = self.getInferenceResult( - x, output_class, new_sess) - - # Test Toco-converted model. - result = self.tfliteInvoke(new_sess, test_inputs, x, output_class, False) - self.assertTrue(np.allclose(expected_output, result, rtol=1e-6, atol=1e-2)) - @test_util.enable_control_flow_v2 def testDynamicRnnMultiRnnCell(self): sess = tf.compat.v1.Session() @@ -347,34 +320,6 @@ class BidirectionalSequenceRnnTest(test_util.TensorFlowTestCase): result = self.tfliteInvoke(new_sess, test_inputs, x, output_class, False) self.assertTrue(np.allclose(expected_output, result, rtol=1e-6, atol=1e-2)) - @test_util.enable_control_flow_v2 - def testDynamicRnnMultiRnnCellWithSequenceLength(self): - sess = tf.compat.v1.Session() - - x, prediction, output_class = self.buildModel( - self.buildRnnLayer(), - self.buildRnnLayer(), - True, - is_inference=False, - use_sequence_length=True) - self.trainModel(x, prediction, output_class, sess) - - saver = tf.compat.v1.train.Saver() - x, prediction, output_class, new_sess = self.saveAndRestoreModel( - self.buildRnnLayer(), - self.buildRnnLayer(), - sess, - saver, - is_dynamic_rnn=True, - use_sequence_length=True) - - test_inputs, expected_output = self.getInferenceResult( - x, output_class, new_sess) - - # Test Toco-converted model. - result = self.tfliteInvoke(new_sess, test_inputs, x, output_class, False) - self.assertTrue(np.allclose(expected_output, result, rtol=1e-6, atol=1e-2)) - if __name__ == "__main__": tf.disable_v2_behavior()