add support for quantized ops on windows

This commit is contained in:
Guenther Schmuelling 2017-11-28 10:46:48 -08:00
parent 55055a23c8
commit 7ea0fd6cca
7 changed files with 69 additions and 23 deletions

View File

@ -19,23 +19,6 @@ for instructions on how to install a pre-built TensorFlow package on Windows.
### Current known limitations
* It is not possible to load a custom Op library.
* GCS file system is not supported.
* The following Ops are not currently implemented:
- Dequantize
- QuantizeAndDequantize
- QuantizedAvgPool
- QuantizedBatchNomWithGlobalNormalization
- QuantizedBiasAdd
- QuantizedConcat
- QuantizedConv2D
- QuantizedMatmul
- QuantizedMaxPoo
- QuantizeDownAndShrinkRange
- QuantizedRelu
- QuantizedRelu6
- QuantizedReshape
- QuantizeV2
- RequantizationRange
- Requantize
## Building with CMake

View File

@ -14,8 +14,8 @@
# ==============================================================================
include (ExternalProject)
set(gemmlowp_URL https://mirror.bazel.build/github.com/google/gemmlowp/archive/010bb3e71a26ca1d0884a167081d092b43563996.zip)
set(gemmlowp_HASH SHA256=dd2557072bde12141419cb8320a9c25e6ec41a8ae53c2ac78c076a347bb46d9d)
set(gemmlowp_URL https://github.com/google/gemmlowp/archive/6a2a90822e8546fc2bfa7044de0faf1c1cb4862f.zip)
set(gemmlowp_HASH SHA256=3447948d219f3270383766bbe08942888c0eb4e0ca6663c0e0548502ec5bb77d)
set(gemmlowp_BUILD ${CMAKE_CURRENT_BINARY_DIR}/gemmlowp/src/gemmlowp)
set(gemmlowp_INCLUDE_DIR ${CMAKE_CURRENT_BINARY_DIR}/gemmlowp/src/gemmlowp)

View File

@ -150,9 +150,6 @@ list(REMOVE_ITEM tf_core_kernels_srcs ${tf_core_kernels_exclude_srcs})
if(WIN32)
file(GLOB_RECURSE tf_core_kernels_windows_exclude_srcs
# not working on windows yet
"${tensorflow_source_dir}/tensorflow/core/kernels/meta_support.*"
"${tensorflow_source_dir}/tensorflow/core/kernels/*quantiz*.h"
"${tensorflow_source_dir}/tensorflow/core/kernels/*quantiz*.cc"
"${tensorflow_source_dir}/tensorflow/core/kernels/neon/*"
# not in core - those are loaded dynamically as dll
"${tensorflow_source_dir}/tensorflow/contrib/nearest_neighbor/kernels/hyperplane_lsh_probes.cc"

View File

@ -145,6 +145,8 @@ if (tensorflow_BUILD_PYTHON_TESTS)
"${tensorflow_source_dir}/tensorflow/contrib/estimator/python/estimator/*_test.py"
"${tensorflow_source_dir}/tensorflow/python/kernel_tests/*.py"
"${tensorflow_source_dir}/tensorflow/python/meta_graph_transform/*_test.py"
"${tensorflow_source_dir}/tensorflow/python/ops/quantized_conv_ops_test.py"
"${tensorflow_source_dir}/tensorflow/python/ops/quantized_ops_test.py"
"${tensorflow_source_dir}/tensorflow/python/platform/build_info_test.py"
"${tensorflow_source_dir}/tensorflow/python/profiler/*_test.py"
"${tensorflow_source_dir}/tensorflow/python/profiler/internal/*_test.py"

View File

@ -268,6 +268,13 @@ class Im2ColConvFunctor {
Im2ColBufferResource<T1, chunk_value_count>* im2col_buffer_resource;
std::function<Status(Im2ColBufferResource<T1, chunk_value_count>**)>
creator = [](Im2ColBufferResource<T1, chunk_value_count>** resource) {
#ifdef _MSC_VER
// MSVC complains about the capture of chunk_value_count which oddly
// works fine in conv_ops_using_gemm.cc for example.
// Define chunk_value_count inside the lambda for now.
const int64 chunk_value_count =
(kMaxChunkSize + (sizeof(T1) - 1)) / sizeof(T1);
#endif
*resource = new Im2ColBufferResource<T1, chunk_value_count>();
return Status::OK();
};

View File

@ -93,7 +93,7 @@ class Conv2DTest(test.TestCase):
quantized_range = ((quantized_max - quantized_min) * range_adjust)
range_scale = (quantized_range / number_of_steps)
lowest_quantized = -(1 << (number_of_bits - 1))
result = np.array([(quantized_min + ((x - lowest_quantized) * range_scale))
result = np.array([(quantized_min + ((float(x) - lowest_quantized) * range_scale))
for x in quantized.flatten()])
return result

View File

@ -0,0 +1,57 @@
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functional tests for quantized operations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.platform import test
class QuantizedOpsTest(test.TestCase):
def __init__(self, method_name="runTest"):
super(QuantizedOpsTest, self).__init__(method_name)
def testQuantizeOp(self):
expected_output = [1, 1, 2, 127, 255, 255]
with self.test_session(use_gpu=False) as sess:
x = constant_op.constant([1.0, 1.25, 1.75, 127.0, 255.0, 500.0], shape=[6], dtype=dtypes.float32)
x_min = 0.0
x_max = 255.0
op = array_ops.quantize(x, x_min, x_max, dtypes.quint8, mode="MIN_FIRST")
value = sess.run(op)
self.assertArrayNear(expected_output, value.output, 0.1)
def testDequantizeOp(self):
expected_output = [1.0, 2.0, 4.0, 8.0, 16.0, 255.0]
inp = np.array([1, 2, 4, 8, 16, 255]).astype(np.uint8)
with self.test_session(use_gpu=False) as sess:
x = constant_op.constant(inp, shape=[6], dtype=dtypes.quint8)
x_min = 0.0
x_max = 255.0
op = array_ops.dequantize(x, x_min, x_max, mode="MIN_FIRST")
value = sess.run(op)
self.assertArrayNear(expected_output, value, 0.1)
if __name__ == "__main__":
test.main()