Adding serialization unit tests for the different combinations of compile loss inputs.

PiperOrigin-RevId: 286421910
Change-Id: Icbd2cf3b7b21cf6851202e6641f9c95916e971ea
This commit is contained in:
Pavithra Vijay 2019-12-19 10:48:11 -08:00 committed by TensorFlower Gardener
parent 7e1680206a
commit 7def022685
3 changed files with 211 additions and 56 deletions

View File

@ -737,6 +737,20 @@ tf_py_test(
],
)
tf_py_test(
name = "losses_serialization_test",
size = "medium",
srcs = ["saving/losses_serialization_test.py"],
python_version = "PY3",
shard_count = 4,
deps = [
":keras",
"//tensorflow/python:client_testlib",
"//third_party/py/numpy",
"@absl_py//absl/testing:parameterized",
],
)
tf_py_test(
name = "advanced_activations_test",
size = "medium",

View File

@ -18,9 +18,6 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import shutil
import numpy as np
from tensorflow.python import keras
@ -29,15 +26,9 @@ from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.keras.utils import generic_utils
from tensorflow.python.keras.utils import losses_utils
from tensorflow.python.platform import test
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
h5py = None
ALL_LOSSES = [keras.losses.mean_squared_error,
keras.losses.mean_absolute_error,
keras.losses.mean_absolute_percentage_error,
@ -53,20 +44,6 @@ ALL_LOSSES = [keras.losses.mean_squared_error,
keras.losses.categorical_hinge]
class _MSEMAELoss(object):
"""Loss function with internal state, for testing serialization code."""
def __init__(self, mse_fraction):
self.mse_fraction = mse_fraction
def __call__(self, y_true, y_pred, sample_weight=None):
return (self.mse_fraction * keras.losses.mse(y_true, y_pred) +
(1 - self.mse_fraction) * keras.losses.mae(y_true, y_pred))
def get_config(self):
return {'mse_fraction': self.mse_fraction}
class KerasLossesTest(test.TestCase):
def test_objective_shapes_3d(self):
@ -200,39 +177,6 @@ class KerasLossesTest(test.TestCase):
loss = keras.backend.eval(keras.losses.categorical_hinge(y_true, y_pred))
self.assertAllClose(expected_loss, np.mean(loss))
def test_serializing_loss_class(self):
orig_loss_class = _MSEMAELoss(0.3)
with generic_utils.custom_object_scope({'_MSEMAELoss': _MSEMAELoss}):
serialized = keras.losses.serialize(orig_loss_class)
with generic_utils.custom_object_scope({'_MSEMAELoss': _MSEMAELoss}):
deserialized = keras.losses.deserialize(serialized)
assert isinstance(deserialized, _MSEMAELoss)
assert deserialized.mse_fraction == 0.3
def test_serializing_model_with_loss_class(self):
tmpdir = self.get_temp_dir()
self.addCleanup(shutil.rmtree, tmpdir)
model_filename = os.path.join(tmpdir, 'custom_loss.h5')
with self.cached_session():
with generic_utils.custom_object_scope({'_MSEMAELoss': _MSEMAELoss}):
loss = _MSEMAELoss(0.3)
inputs = keras.layers.Input((2,))
outputs = keras.layers.Dense(1, name='model_output')(inputs)
model = keras.models.Model(inputs, outputs)
model.compile(optimizer='sgd', loss={'model_output': loss})
model.fit(np.random.rand(256, 2), np.random.rand(256, 1))
if h5py is None:
return
model.save(model_filename)
with generic_utils.custom_object_scope({'_MSEMAELoss': _MSEMAELoss}):
loaded_model = keras.models.load_model(model_filename)
loaded_model.predict(np.random.rand(128, 2))
def test_loss_wrapper(self):
loss_fn = keras.losses.get('mse')
mse_obj = keras.losses.LossFunctionWrapper(loss_fn, name=loss_fn.__name__)

View File

@ -0,0 +1,197 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Keras losses serialization."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import shutil
from absl.testing import parameterized
import numpy as np
from tensorflow.python import keras
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import layers
from tensorflow.python.keras import losses
from tensorflow.python.keras import optimizer_v2
from tensorflow.python.keras import testing_utils
from tensorflow.python.keras.utils import generic_utils
from tensorflow.python.keras.utils import losses_utils
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import test
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
h5py = None
# Custom loss class
class MyMeanAbsoluteError(losses.LossFunctionWrapper):
def __init__(self,
reduction=losses_utils.ReductionV2.AUTO,
name='mean_absolute_error'):
super(MyMeanAbsoluteError, self).__init__(
_my_mae, name=name, reduction=reduction)
# Custom loss function
def _my_mae(y_true, y_pred):
return keras.backend.mean(math_ops.abs(y_pred - y_true), axis=-1)
def _get_multi_io_model():
inp_1 = layers.Input(shape=(1,), name='input_1')
inp_2 = layers.Input(shape=(1,), name='input_2')
d = testing_utils.Bias(name='output')
out_1 = d(inp_1)
out_2 = d(inp_2)
return keras.Model([inp_1, inp_2], [out_1, out_2])
@keras_parameterized.run_all_keras_modes
@parameterized.named_parameters([
dict(testcase_name='string', value='mae'),
dict(testcase_name='built_in_fn', value=losses.mae),
dict(testcase_name='built_in_class', value=losses.MeanAbsoluteError()),
dict(testcase_name='custom_fn', value=_my_mae),
dict(testcase_name='custom_class', value=MyMeanAbsoluteError()),
dict(testcase_name='list_of_strings', value=['mae', 'mae']),
dict(testcase_name='list_of_built_in_fns', value=[losses.mae, losses.mae]),
dict(
testcase_name='list_of_built_in_classes',
value=[losses.MeanAbsoluteError(),
losses.MeanAbsoluteError()]),
dict(testcase_name='list_of_custom_fns', value=[_my_mae, _my_mae]),
dict(
testcase_name='list_of_custom_classes',
value=[MyMeanAbsoluteError(),
MyMeanAbsoluteError()]),
dict(
testcase_name='dict_of_string',
value={
'output': 'mae',
'output_1': 'mae',
}),
dict(
testcase_name='dict_of_built_in_fn',
value={
'output': losses.mae,
'output_1': losses.mae,
}),
dict(
testcase_name='dict_of_built_in_class',
value={
'output': losses.MeanAbsoluteError(),
'output_1': losses.MeanAbsoluteError(),
}),
dict(
testcase_name='dict_of_custom_fn',
value={
'output': _my_mae,
'output_1': _my_mae
}),
dict(
testcase_name='dict_of_custom_class',
value={
'output': MyMeanAbsoluteError(),
'output_1': MyMeanAbsoluteError(),
}),
])
class LossesSerialization(keras_parameterized.TestCase):
def setUp(self):
super(LossesSerialization, self).setUp()
tmpdir = self.get_temp_dir()
self.addCleanup(shutil.rmtree, tmpdir)
self.model_filename = os.path.join(tmpdir, 'tmp_model_loss.h5')
self.x = np.array([[0.], [1.], [2.]], dtype='float32')
self.y = np.array([[0.5], [2.], [3.5]], dtype='float32')
self.w = np.array([1.25, 0.5, 1.25], dtype='float32')
def test_serializing_model_with_loss_with_custom_object_scope(self, value):
with generic_utils.custom_object_scope({
'MyMeanAbsoluteError': MyMeanAbsoluteError,
'_my_mae': _my_mae,
'Bias': testing_utils.Bias,
}):
model = _get_multi_io_model()
model.compile(
optimizer_v2.gradient_descent.SGD(0.1),
loss=value,
run_eagerly=testing_utils.should_run_eagerly(),
experimental_run_tf_function=testing_utils.should_run_tf_function())
history = model.fit([self.x, self.x], [self.y, self.y],
batch_size=3,
epochs=3,
sample_weight=[self.w, self.w])
# Assert training.
self.assertAllClose(history.history['loss'], [2., 1.6, 1.2], 1e-3)
eval_results = model.evaluate([self.x, self.x], [self.y, self.y],
sample_weight=[self.w, self.w])
if h5py is None:
return
model.save(self.model_filename)
loaded_model = keras.models.load_model(self.model_filename)
loaded_model.predict([self.x, self.x])
loaded_eval_results = loaded_model.evaluate(
[self.x, self.x], [self.y, self.y], sample_weight=[self.w, self.w])
# Assert all evaluation results are the same.
self.assertAllClose(eval_results, loaded_eval_results, 1e-9)
def test_serializing_model_with_loss_with_custom_objects(self, value):
model = _get_multi_io_model()
model.compile(
optimizer_v2.gradient_descent.SGD(0.1),
loss=value,
run_eagerly=testing_utils.should_run_eagerly(),
experimental_run_tf_function=testing_utils.should_run_tf_function())
history = model.fit([self.x, self.x], [self.y, self.y],
batch_size=3,
epochs=3,
sample_weight=[self.w, self.w])
# Assert training.
self.assertAllClose(history.history['loss'], [2., 1.6, 1.2], 1e-3)
eval_results = model.evaluate([self.x, self.x], [self.y, self.y],
sample_weight=[self.w, self.w])
if h5py is None:
return
model.save(self.model_filename)
loaded_model = keras.models.load_model(
self.model_filename,
custom_objects={
'MyMeanAbsoluteError': MyMeanAbsoluteError,
'_my_mae': _my_mae,
'Bias': testing_utils.Bias,
})
loaded_model.predict([self.x, self.x])
loaded_eval_results = loaded_model.evaluate([self.x, self.x],
[self.y, self.y],
sample_weight=[self.w, self.w])
# Assert all evaluation results are the same.
self.assertAllClose(eval_results, loaded_eval_results, 1e-9)
if __name__ == '__main__':
test.main()