Fork the keras related saver_test to keras.
PiperOrigin-RevId: 316475172 Change-Id: I9b38d7624ed01a724c15ae571c5be1a7f0e049ad
This commit is contained in:
parent
81601f9bb4
commit
7d36cebea4
@ -335,6 +335,29 @@ tf_py_test(
|
|||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
cuda_py_test(
|
||||||
|
name = "saver_test",
|
||||||
|
size = "medium",
|
||||||
|
srcs = ["saver_test.py"],
|
||||||
|
python_version = "PY3",
|
||||||
|
deps = [
|
||||||
|
"//tensorflow/python:client_testlib",
|
||||||
|
"//tensorflow/python:constant_op",
|
||||||
|
"//tensorflow/python:errors",
|
||||||
|
"//tensorflow/python:framework_ops",
|
||||||
|
"//tensorflow/python:nn_grad",
|
||||||
|
"//tensorflow/python:resource_variable_ops",
|
||||||
|
"//tensorflow/python:saver",
|
||||||
|
"//tensorflow/python:training_lib",
|
||||||
|
"//tensorflow/python:training_util",
|
||||||
|
"//tensorflow/python/eager:context",
|
||||||
|
"//tensorflow/python/keras/engine",
|
||||||
|
"//tensorflow/python/keras/layers:core",
|
||||||
|
"//tensorflow/python/training/tracking",
|
||||||
|
"//tensorflow/python/training/tracking:util",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
tf_py_test(
|
tf_py_test(
|
||||||
name = "temporal_sample_weights_correctness_test",
|
name = "temporal_sample_weights_correctness_test",
|
||||||
srcs = ["temporal_sample_weights_correctness_test.py"],
|
srcs = ["temporal_sample_weights_correctness_test.py"],
|
||||||
|
158
tensorflow/python/keras/tests/saver_test.py
Normal file
158
tensorflow/python/keras/tests/saver_test.py
Normal file
@ -0,0 +1,158 @@
|
|||||||
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# =============================================================================
|
||||||
|
"""Tests for tensorflow.python.training.saver.py."""
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import functools
|
||||||
|
import os
|
||||||
|
|
||||||
|
from tensorflow.python.eager import context
|
||||||
|
from tensorflow.python.framework import constant_op
|
||||||
|
from tensorflow.python.framework import errors
|
||||||
|
from tensorflow.python.framework import ops as ops_lib
|
||||||
|
from tensorflow.python.keras.engine import training
|
||||||
|
from tensorflow.python.keras.layers import core
|
||||||
|
from tensorflow.python.ops import resource_variable_ops
|
||||||
|
from tensorflow.python.platform import test
|
||||||
|
from tensorflow.python.training import adam
|
||||||
|
from tensorflow.python.training import saver as saver_module
|
||||||
|
from tensorflow.python.training import training_util
|
||||||
|
from tensorflow.python.training.tracking import tracking as trackable_tracking
|
||||||
|
from tensorflow.python.training.tracking import util as trackable_utils
|
||||||
|
|
||||||
|
|
||||||
|
class NonLayerTrackable(trackable_tracking.AutoTrackable):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super(NonLayerTrackable, self).__init__()
|
||||||
|
self.a_variable = trackable_utils.add_variable(
|
||||||
|
self, name="a_variable", shape=[])
|
||||||
|
|
||||||
|
|
||||||
|
class MyModel(training.Model):
|
||||||
|
"""A concrete Model for testing."""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super(MyModel, self).__init__()
|
||||||
|
self._named_dense = core.Dense(1, use_bias=True)
|
||||||
|
self._second = core.Dense(1, use_bias=False)
|
||||||
|
# We can still track Trackables which aren't Layers.
|
||||||
|
self._non_layer = NonLayerTrackable()
|
||||||
|
|
||||||
|
def call(self, values):
|
||||||
|
ret = self._second(self._named_dense(values))
|
||||||
|
return ret
|
||||||
|
|
||||||
|
|
||||||
|
class TrackableCompatibilityTests(test.TestCase):
|
||||||
|
|
||||||
|
def _initialized_model(self):
|
||||||
|
input_value = constant_op.constant([[3.]])
|
||||||
|
model = MyModel()
|
||||||
|
optimizer = adam.AdamOptimizer(0.001)
|
||||||
|
optimizer_step = training_util.get_or_create_global_step()
|
||||||
|
root_trackable = trackable_utils.Checkpoint(
|
||||||
|
optimizer=optimizer, model=model, optimizer_step=optimizer_step)
|
||||||
|
train_op = optimizer.minimize(
|
||||||
|
functools.partial(model, input_value),
|
||||||
|
global_step=optimizer_step)
|
||||||
|
self.evaluate(trackable_utils.gather_initializers(
|
||||||
|
root_trackable))
|
||||||
|
self.evaluate(train_op)
|
||||||
|
# A regular variable, a slot variable, and a non-slot Optimizer variable
|
||||||
|
# with known values to check when loading.
|
||||||
|
self.evaluate(model._named_dense.bias.assign([1.]))
|
||||||
|
self.evaluate(optimizer.get_slot(
|
||||||
|
var=model._named_dense.bias, name="m").assign([2.]))
|
||||||
|
beta1_power, _ = optimizer._get_beta_accumulators()
|
||||||
|
self.evaluate(beta1_power.assign(3.))
|
||||||
|
return root_trackable
|
||||||
|
|
||||||
|
def _set_sentinels(self, root_trackable):
|
||||||
|
self.evaluate(root_trackable.model._named_dense.bias.assign([101.]))
|
||||||
|
self.evaluate(
|
||||||
|
root_trackable.optimizer.get_slot(
|
||||||
|
var=root_trackable.model._named_dense.bias, name="m")
|
||||||
|
.assign([102.]))
|
||||||
|
beta1_power, _ = root_trackable.optimizer._get_beta_accumulators()
|
||||||
|
self.evaluate(beta1_power.assign(103.))
|
||||||
|
|
||||||
|
def _check_sentinels(self, root_trackable):
|
||||||
|
self.assertAllEqual(
|
||||||
|
[1.], self.evaluate(root_trackable.model._named_dense.bias))
|
||||||
|
self.assertAllEqual([2.], self.evaluate(
|
||||||
|
root_trackable.optimizer.get_slot(
|
||||||
|
var=root_trackable.model._named_dense.bias, name="m")))
|
||||||
|
beta1_power, _ = root_trackable.optimizer._get_beta_accumulators()
|
||||||
|
self.assertAllEqual(3., self.evaluate(beta1_power))
|
||||||
|
|
||||||
|
def testLoadFromObjectBasedGraph(self):
|
||||||
|
checkpoint_directory = self.get_temp_dir()
|
||||||
|
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
||||||
|
|
||||||
|
save_graph = ops_lib.Graph()
|
||||||
|
with save_graph.as_default(), self.session(graph=save_graph) as sess:
|
||||||
|
root = self._initialized_model()
|
||||||
|
object_saver = trackable_utils.Checkpoint(root=root)
|
||||||
|
save_path = object_saver.save(file_prefix=checkpoint_prefix)
|
||||||
|
|
||||||
|
# An incompatible object-based checkpoint to check error messages
|
||||||
|
var = resource_variable_ops.ResourceVariable(1., name="a")
|
||||||
|
self.evaluate(var.initializer)
|
||||||
|
second_saver = trackable_utils.Checkpoint(v=var)
|
||||||
|
second_path = second_saver.save(file_prefix=os.path.join(
|
||||||
|
checkpoint_directory, "second"))
|
||||||
|
|
||||||
|
restore_graph = ops_lib.Graph()
|
||||||
|
with restore_graph.as_default(), self.session(
|
||||||
|
graph=restore_graph) as sess:
|
||||||
|
root = self._initialized_model()
|
||||||
|
self._set_sentinels(root)
|
||||||
|
saver = saver_module.Saver()
|
||||||
|
saver.restore(sess=sess, save_path=save_path)
|
||||||
|
self._check_sentinels(root)
|
||||||
|
before_second_restore_ops = restore_graph.get_operations()
|
||||||
|
# Test that multiple restores do not pollute the graph
|
||||||
|
saver.restore(sess=sess, save_path=save_path)
|
||||||
|
self.assertEqual(before_second_restore_ops,
|
||||||
|
restore_graph.get_operations())
|
||||||
|
with self.assertRaisesRegexp(errors.NotFoundError,
|
||||||
|
"Could not find some variables"):
|
||||||
|
saver.restore(sess=sess, save_path=second_path)
|
||||||
|
|
||||||
|
def testLoadFromObjectBasedEager(self):
|
||||||
|
checkpoint_directory = self.get_temp_dir()
|
||||||
|
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
||||||
|
|
||||||
|
save_graph = ops_lib.Graph()
|
||||||
|
with save_graph.as_default(), self.session(graph=save_graph):
|
||||||
|
root = self._initialized_model()
|
||||||
|
object_saver = trackable_utils.Checkpoint(root=root)
|
||||||
|
save_path = object_saver.save(file_prefix=checkpoint_prefix)
|
||||||
|
|
||||||
|
with context.eager_mode():
|
||||||
|
root = self._initialized_model()
|
||||||
|
self._set_sentinels(root)
|
||||||
|
saver = saver_module.Saver(
|
||||||
|
root.model.variables + root.optimizer.variables())
|
||||||
|
saver.restore(sess=None, save_path=save_path)
|
||||||
|
self._check_sentinels(root)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test.main()
|
@ -18,7 +18,6 @@ from __future__ import absolute_import
|
|||||||
from __future__ import division
|
from __future__ import division
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
|
|
||||||
import functools
|
|
||||||
import glob
|
import glob
|
||||||
import math
|
import math
|
||||||
import os
|
import os
|
||||||
@ -48,8 +47,6 @@ from tensorflow.python.framework import graph_io
|
|||||||
from tensorflow.python.framework import meta_graph
|
from tensorflow.python.framework import meta_graph
|
||||||
from tensorflow.python.framework import ops as ops_lib
|
from tensorflow.python.framework import ops as ops_lib
|
||||||
from tensorflow.python.framework import test_util
|
from tensorflow.python.framework import test_util
|
||||||
from tensorflow.python.keras.engine import training
|
|
||||||
from tensorflow.python.keras.layers import core
|
|
||||||
from tensorflow.python.lib.io import file_io
|
from tensorflow.python.lib.io import file_io
|
||||||
from tensorflow.python.ops import array_ops
|
from tensorflow.python.ops import array_ops
|
||||||
from tensorflow.python.ops import control_flow_ops
|
from tensorflow.python.ops import control_flow_ops
|
||||||
@ -74,10 +71,7 @@ from tensorflow.python.training import py_checkpoint_reader
|
|||||||
from tensorflow.python.training import queue_runner_impl
|
from tensorflow.python.training import queue_runner_impl
|
||||||
from tensorflow.python.training import saver as saver_module
|
from tensorflow.python.training import saver as saver_module
|
||||||
from tensorflow.python.training import saver_test_utils
|
from tensorflow.python.training import saver_test_utils
|
||||||
from tensorflow.python.training import training_util
|
|
||||||
from tensorflow.python.training.tracking import base as trackable_base
|
from tensorflow.python.training.tracking import base as trackable_base
|
||||||
from tensorflow.python.training.tracking import tracking as trackable_tracking
|
|
||||||
from tensorflow.python.training.tracking import util as trackable_utils
|
|
||||||
from tensorflow.python.util import compat
|
from tensorflow.python.util import compat
|
||||||
|
|
||||||
|
|
||||||
@ -3024,29 +3018,6 @@ class _OwnsMirroredVariables(trackable_base.Trackable):
|
|||||||
return self.non_dep_variable.name
|
return self.non_dep_variable.name
|
||||||
|
|
||||||
|
|
||||||
class NonLayerTrackable(trackable_tracking.AutoTrackable):
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
super(NonLayerTrackable, self).__init__()
|
|
||||||
self.a_variable = trackable_utils.add_variable(
|
|
||||||
self, name="a_variable", shape=[])
|
|
||||||
|
|
||||||
|
|
||||||
class MyModel(training.Model):
|
|
||||||
"""A concrete Model for testing."""
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
super(MyModel, self).__init__()
|
|
||||||
self._named_dense = core.Dense(1, use_bias=True)
|
|
||||||
self._second = core.Dense(1, use_bias=False)
|
|
||||||
# We can still track Trackables which aren't Layers.
|
|
||||||
self._non_layer = NonLayerTrackable()
|
|
||||||
|
|
||||||
def call(self, values):
|
|
||||||
ret = self._second(self._named_dense(values))
|
|
||||||
return ret
|
|
||||||
|
|
||||||
|
|
||||||
class TrackableCompatibilityTests(test.TestCase):
|
class TrackableCompatibilityTests(test.TestCase):
|
||||||
|
|
||||||
# TODO(allenl): Track down python3 reference cycles in these tests.
|
# TODO(allenl): Track down python3 reference cycles in these tests.
|
||||||
@ -3112,46 +3083,6 @@ class TrackableCompatibilityTests(test.TestCase):
|
|||||||
saver.restore(sess, save_path)
|
saver.restore(sess, save_path)
|
||||||
self.assertEqual(1, v.eval_count)
|
self.assertEqual(1, v.eval_count)
|
||||||
|
|
||||||
def _initialized_model(self):
|
|
||||||
input_value = constant_op.constant([[3.]])
|
|
||||||
model = MyModel()
|
|
||||||
optimizer = adam.AdamOptimizer(0.001)
|
|
||||||
optimizer_step = training_util.get_or_create_global_step()
|
|
||||||
root_trackable = trackable_utils.Checkpoint(
|
|
||||||
optimizer=optimizer, model=model, optimizer_step=optimizer_step)
|
|
||||||
train_op = optimizer.minimize(
|
|
||||||
functools.partial(model, input_value),
|
|
||||||
global_step=optimizer_step)
|
|
||||||
self.evaluate(trackable_utils.gather_initializers(
|
|
||||||
root_trackable))
|
|
||||||
self.evaluate(train_op)
|
|
||||||
# A regular variable, a slot variable, and a non-slot Optimizer variable
|
|
||||||
# with known values to check when loading.
|
|
||||||
self.evaluate(model._named_dense.bias.assign([1.]))
|
|
||||||
self.evaluate(optimizer.get_slot(
|
|
||||||
var=model._named_dense.bias, name="m").assign([2.]))
|
|
||||||
beta1_power, _ = optimizer._get_beta_accumulators()
|
|
||||||
self.evaluate(beta1_power.assign(3.))
|
|
||||||
return root_trackable
|
|
||||||
|
|
||||||
def _set_sentinels(self, root_trackable):
|
|
||||||
self.evaluate(root_trackable.model._named_dense.bias.assign([101.]))
|
|
||||||
self.evaluate(
|
|
||||||
root_trackable.optimizer.get_slot(
|
|
||||||
var=root_trackable.model._named_dense.bias, name="m")
|
|
||||||
.assign([102.]))
|
|
||||||
beta1_power, _ = root_trackable.optimizer._get_beta_accumulators()
|
|
||||||
self.evaluate(beta1_power.assign(103.))
|
|
||||||
|
|
||||||
def _check_sentinels(self, root_trackable):
|
|
||||||
self.assertAllEqual(
|
|
||||||
[1.], self.evaluate(root_trackable.model._named_dense.bias))
|
|
||||||
self.assertAllEqual([2.], self.evaluate(
|
|
||||||
root_trackable.optimizer.get_slot(
|
|
||||||
var=root_trackable.model._named_dense.bias, name="m")))
|
|
||||||
beta1_power, _ = root_trackable.optimizer._get_beta_accumulators()
|
|
||||||
self.assertAllEqual(3., self.evaluate(beta1_power))
|
|
||||||
|
|
||||||
def testVariableNotFoundErrorRaised(self):
|
def testVariableNotFoundErrorRaised(self):
|
||||||
# Restore does some tricky exception handling to figure out if it should
|
# Restore does some tricky exception handling to figure out if it should
|
||||||
# load an object-based checkpoint. Tests that the exception handling isn't
|
# load an object-based checkpoint. Tests that the exception handling isn't
|
||||||
@ -3199,58 +3130,6 @@ class TrackableCompatibilityTests(test.TestCase):
|
|||||||
"a mismatch between the current graph and the graph"):
|
"a mismatch between the current graph and the graph"):
|
||||||
a_saver.restore(sess=sess, save_path=save_path)
|
a_saver.restore(sess=sess, save_path=save_path)
|
||||||
|
|
||||||
def testLoadFromObjectBasedGraph(self):
|
|
||||||
checkpoint_directory = self.get_temp_dir()
|
|
||||||
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
|
||||||
|
|
||||||
save_graph = ops_lib.Graph()
|
|
||||||
with save_graph.as_default(), self.session(graph=save_graph) as sess:
|
|
||||||
root = self._initialized_model()
|
|
||||||
object_saver = trackable_utils.Checkpoint(root=root)
|
|
||||||
save_path = object_saver.save(file_prefix=checkpoint_prefix)
|
|
||||||
|
|
||||||
# An incompatible object-based checkpoint to check error messages
|
|
||||||
var = resource_variable_ops.ResourceVariable(1., name="a")
|
|
||||||
self.evaluate(var.initializer)
|
|
||||||
second_saver = trackable_utils.Checkpoint(v=var)
|
|
||||||
second_path = second_saver.save(file_prefix=os.path.join(
|
|
||||||
checkpoint_directory, "second"))
|
|
||||||
|
|
||||||
restore_graph = ops_lib.Graph()
|
|
||||||
with restore_graph.as_default(), self.session(
|
|
||||||
graph=restore_graph) as sess:
|
|
||||||
root = self._initialized_model()
|
|
||||||
self._set_sentinels(root)
|
|
||||||
saver = saver_module.Saver()
|
|
||||||
saver.restore(sess=sess, save_path=save_path)
|
|
||||||
self._check_sentinels(root)
|
|
||||||
before_second_restore_ops = restore_graph.get_operations()
|
|
||||||
# Test that multiple restores do not pollute the graph
|
|
||||||
saver.restore(sess=sess, save_path=save_path)
|
|
||||||
self.assertEqual(before_second_restore_ops,
|
|
||||||
restore_graph.get_operations())
|
|
||||||
with self.assertRaisesRegexp(errors.NotFoundError,
|
|
||||||
"Could not find some variables"):
|
|
||||||
saver.restore(sess=sess, save_path=second_path)
|
|
||||||
|
|
||||||
def testLoadFromObjectBasedEager(self):
|
|
||||||
checkpoint_directory = self.get_temp_dir()
|
|
||||||
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
|
||||||
|
|
||||||
save_graph = ops_lib.Graph()
|
|
||||||
with save_graph.as_default(), self.session(graph=save_graph):
|
|
||||||
root = self._initialized_model()
|
|
||||||
object_saver = trackable_utils.Checkpoint(root=root)
|
|
||||||
save_path = object_saver.save(file_prefix=checkpoint_prefix)
|
|
||||||
|
|
||||||
with context.eager_mode():
|
|
||||||
root = self._initialized_model()
|
|
||||||
self._set_sentinels(root)
|
|
||||||
saver = saver_module.Saver(
|
|
||||||
root.model.variables + root.optimizer.variables())
|
|
||||||
saver.restore(sess=None, save_path=save_path)
|
|
||||||
self._check_sentinels(root)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
test.main()
|
test.main()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user