diff --git a/tensorflow/python/keras/__init__.py b/tensorflow/python/keras/__init__.py index 64fa7313ca3..96552549a27 100644 --- a/tensorflow/python/keras/__init__.py +++ b/tensorflow/python/keras/__init__.py @@ -38,6 +38,7 @@ from tensorflow.python.keras import metrics from tensorflow.python.keras import models from tensorflow.python.keras import ops from tensorflow.python.keras import optimizers +from tensorflow.python.keras import premade from tensorflow.python.keras import preprocessing from tensorflow.python.keras import regularizers from tensorflow.python.keras import utils diff --git a/tensorflow/python/keras/premade/BUILD b/tensorflow/python/keras/premade/BUILD index 2da9deb1ed7..af8e86b0d89 100644 --- a/tensorflow/python/keras/premade/BUILD +++ b/tensorflow/python/keras/premade/BUILD @@ -13,6 +13,7 @@ load("//tensorflow:tensorflow.bzl", "py_test") py_library( name = "premade", srcs = [ + "__init__.py", "linear.py", "wide_deep.py", ], diff --git a/tensorflow/python/keras/premade/__init__.py b/tensorflow/python/keras/premade/__init__.py new file mode 100644 index 00000000000..507f7a6c2ec --- /dev/null +++ b/tensorflow/python/keras/premade/__init__.py @@ -0,0 +1,21 @@ +# Copyright 2019 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +"""Premade Model API.""" +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +from tensorflow.python.keras.premade import linear +from tensorflow.python.keras.premade import wide_deep diff --git a/tensorflow/python/keras/premade/linear.py b/tensorflow/python/keras/premade/linear.py index c0e0ca7311b..a7e6e096103 100644 --- a/tensorflow/python/keras/premade/linear.py +++ b/tensorflow/python/keras/premade/linear.py @@ -24,8 +24,10 @@ from tensorflow.python.keras import regularizers from tensorflow.python.keras.engine import training from tensorflow.python.keras.layers import core from tensorflow.python.ops import nn +from tensorflow.python.util.tf_export import keras_export +@keras_export('keras.experimental.LinearModel') class LinearModel(training.Model): r"""Linear Model for regression and classification problems. diff --git a/tensorflow/python/keras/premade/wide_deep.py b/tensorflow/python/keras/premade/wide_deep.py index e4ed5269166..ff5dd5e2ed3 100644 --- a/tensorflow/python/keras/premade/wide_deep.py +++ b/tensorflow/python/keras/premade/wide_deep.py @@ -20,8 +20,10 @@ from __future__ import print_function from tensorflow.python.keras import backend as K from tensorflow.python.keras.engine import training +from tensorflow.python.util.tf_export import keras_export +@keras_export('keras.experimental.WideDeepModel') class WideDeepModel(training.Model): r"""Wide & Deep Model for regression and classification problems. diff --git a/tensorflow/python/tools/api/generator/api_init_files.bzl b/tensorflow/python/tools/api/generator/api_init_files.bzl index eaaef4e09d4..741c46ff16f 100644 --- a/tensorflow/python/tools/api/generator/api_init_files.bzl +++ b/tensorflow/python/tools/api/generator/api_init_files.bzl @@ -101,6 +101,7 @@ KERAS_API_INIT_FILES = [ "keras/metrics/__init__.py", "keras/mixed_precision/__init__.py", "keras/mixed_precision/experimental/__init__.py", + "keras/premade/__init__.py", "keras/models/__init__.py", "keras/optimizers/__init__.py", "keras/optimizers/schedules/__init__.py", diff --git a/tensorflow/python/tools/api/generator/api_init_files_v1.bzl b/tensorflow/python/tools/api/generator/api_init_files_v1.bzl index b60a729ea0b..94d72c2a878 100644 --- a/tensorflow/python/tools/api/generator/api_init_files_v1.bzl +++ b/tensorflow/python/tools/api/generator/api_init_files_v1.bzl @@ -131,6 +131,7 @@ KERAS_API_INIT_FILES_V1 = [ "keras/models/__init__.py", "keras/optimizers/__init__.py", "keras/optimizers/schedules/__init__.py", + "keras/premade/__init__.py", "keras/preprocessing/__init__.py", "keras/preprocessing/image/__init__.py", "keras/preprocessing/sequence/__init__.py", diff --git a/tensorflow/tools/api/golden/v1/tensorflow.keras.experimental.-linear-model.pbtxt b/tensorflow/tools/api/golden/v1/tensorflow.keras.experimental.-linear-model.pbtxt new file mode 100644 index 00000000000..488b786eed8 --- /dev/null +++ b/tensorflow/tools/api/golden/v1/tensorflow.keras.experimental.-linear-model.pbtxt @@ -0,0 +1,315 @@ +path: "tensorflow.keras.experimental.LinearModel" +tf_class { + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + member { + name: "activity_regularizer" + mtype: "" + } + member { + name: "dtype" + mtype: "" + } + member { + name: "dynamic" + mtype: "" + } + member { + name: "inbound_nodes" + mtype: "" + } + member { + name: "input" + mtype: "" + } + member { + name: "input_mask" + mtype: "" + } + member { + name: "input_shape" + mtype: "" + } + member { + name: "input_spec" + mtype: "" + } + member { + name: "layers" + mtype: "" + } + member { + name: "losses" + mtype: "" + } + member { + name: "metrics" + mtype: "" + } + member { + name: "metrics_names" + mtype: "" + } + member { + name: "name" + mtype: "" + } + member { + name: "name_scope" + mtype: "" + } + member { + name: "non_trainable_variables" + mtype: "" + } + member { + name: "non_trainable_weights" + mtype: "" + } + member { + name: "outbound_nodes" + mtype: "" + } + member { + name: "output" + mtype: "" + } + member { + name: "output_mask" + mtype: "" + } + member { + name: "output_shape" + mtype: "" + } + member { + name: "run_eagerly" + mtype: "" + } + member { + name: "sample_weights" + mtype: "" + } + member { + name: "state_updates" + mtype: "" + } + member { + name: "stateful" + mtype: "" + } + member { + name: "submodules" + mtype: "" + } + member { + name: "trainable" + mtype: "" + } + member { + name: "trainable_variables" + mtype: "" + } + member { + name: "trainable_weights" + mtype: "" + } + member { + name: "updates" + mtype: "" + } + member { + name: "variables" + mtype: "" + } + member { + name: "weights" + mtype: "" + } + member_method { + name: "__init__" + argspec: "args=[\'self\', \'units\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\'], " + } + member_method { + name: "add_loss" + argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "add_metric" + argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " + } + member_method { + name: "add_update" + argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "add_variable" + argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" + } + member_method { + name: "add_weight" + argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'partitioner\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], " + } + member_method { + name: "apply" + argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" + } + member_method { + name: "build" + argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "call" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "compile" + argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'sample_weight_mode\', \'weighted_metrics\', \'target_tensors\', \'distribute\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " + } + member_method { + name: "compute_mask" + argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "compute_output_shape" + argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "compute_output_signature" + argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "count_params" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "evaluate" + argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], " + } + member_method { + name: "evaluate_generator" + argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " + } + member_method { + name: "fit" + argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'1\', \'1\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " + } + member_method { + name: "fit_generator" + argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " + } + member_method { + name: "from_config" + argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "get_config" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_mask_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_shape_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_layer" + argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " + } + member_method { + name: "get_losses_for" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_mask_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_shape_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_updates_for" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_weights" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "load_weights" + argspec: "args=[\'self\', \'filepath\', \'by_name\'], varargs=None, keywords=None, defaults=[\'False\'], " + } + member_method { + name: "predict" + argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], " + } + member_method { + name: "predict_generator" + argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " + } + member_method { + name: "predict_on_batch" + argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "reset_metrics" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "reset_states" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "save" + argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'include_optimizer\', \'save_format\'], varargs=None, keywords=None, defaults=[\'True\', \'True\', \'None\'], " + } + member_method { + name: "save_weights" + argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=None, defaults=[\'True\', \'None\'], " + } + member_method { + name: "set_weights" + argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "summary" + argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " + } + member_method { + name: "test_on_batch" + argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\'], " + } + member_method { + name: "to_json" + argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" + } + member_method { + name: "to_yaml" + argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" + } + member_method { + name: "train_on_batch" + argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\'], " + } + member_method { + name: "with_name_scope" + argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" + } +} diff --git a/tensorflow/tools/api/golden/v1/tensorflow.keras.experimental.-wide-deep-model.pbtxt b/tensorflow/tools/api/golden/v1/tensorflow.keras.experimental.-wide-deep-model.pbtxt new file mode 100644 index 00000000000..98c2dde203a --- /dev/null +++ b/tensorflow/tools/api/golden/v1/tensorflow.keras.experimental.-wide-deep-model.pbtxt @@ -0,0 +1,315 @@ +path: "tensorflow.keras.experimental.WideDeepModel" +tf_class { + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + member { + name: "activity_regularizer" + mtype: "" + } + member { + name: "dtype" + mtype: "" + } + member { + name: "dynamic" + mtype: "" + } + member { + name: "inbound_nodes" + mtype: "" + } + member { + name: "input" + mtype: "" + } + member { + name: "input_mask" + mtype: "" + } + member { + name: "input_shape" + mtype: "" + } + member { + name: "input_spec" + mtype: "" + } + member { + name: "layers" + mtype: "" + } + member { + name: "losses" + mtype: "" + } + member { + name: "metrics" + mtype: "" + } + member { + name: "metrics_names" + mtype: "" + } + member { + name: "name" + mtype: "" + } + member { + name: "name_scope" + mtype: "" + } + member { + name: "non_trainable_variables" + mtype: "" + } + member { + name: "non_trainable_weights" + mtype: "" + } + member { + name: "outbound_nodes" + mtype: "" + } + member { + name: "output" + mtype: "" + } + member { + name: "output_mask" + mtype: "" + } + member { + name: "output_shape" + mtype: "" + } + member { + name: "run_eagerly" + mtype: "" + } + member { + name: "sample_weights" + mtype: "" + } + member { + name: "state_updates" + mtype: "" + } + member { + name: "stateful" + mtype: "" + } + member { + name: "submodules" + mtype: "" + } + member { + name: "trainable" + mtype: "" + } + member { + name: "trainable_variables" + mtype: "" + } + member { + name: "trainable_weights" + mtype: "" + } + member { + name: "updates" + mtype: "" + } + member { + name: "variables" + mtype: "" + } + member { + name: "weights" + mtype: "" + } + member_method { + name: "__init__" + argspec: "args=[\'self\', \'linear_model\', \'dnn_model\', \'activation\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " + } + member_method { + name: "add_loss" + argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "add_metric" + argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " + } + member_method { + name: "add_update" + argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "add_variable" + argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" + } + member_method { + name: "add_weight" + argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'partitioner\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], " + } + member_method { + name: "apply" + argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" + } + member_method { + name: "build" + argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "call" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "compile" + argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'sample_weight_mode\', \'weighted_metrics\', \'target_tensors\', \'distribute\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " + } + member_method { + name: "compute_mask" + argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "compute_output_shape" + argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "compute_output_signature" + argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "count_params" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "evaluate" + argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], " + } + member_method { + name: "evaluate_generator" + argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " + } + member_method { + name: "fit" + argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'1\', \'1\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " + } + member_method { + name: "fit_generator" + argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " + } + member_method { + name: "from_config" + argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "get_config" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_mask_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_shape_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_layer" + argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " + } + member_method { + name: "get_losses_for" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_mask_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_shape_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_updates_for" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_weights" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "load_weights" + argspec: "args=[\'self\', \'filepath\', \'by_name\'], varargs=None, keywords=None, defaults=[\'False\'], " + } + member_method { + name: "predict" + argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], " + } + member_method { + name: "predict_generator" + argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " + } + member_method { + name: "predict_on_batch" + argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "reset_metrics" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "reset_states" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "save" + argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'include_optimizer\', \'save_format\'], varargs=None, keywords=None, defaults=[\'True\', \'True\', \'None\'], " + } + member_method { + name: "save_weights" + argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=None, defaults=[\'True\', \'None\'], " + } + member_method { + name: "set_weights" + argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "summary" + argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " + } + member_method { + name: "test_on_batch" + argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\'], " + } + member_method { + name: "to_json" + argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" + } + member_method { + name: "to_yaml" + argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" + } + member_method { + name: "train_on_batch" + argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\'], " + } + member_method { + name: "with_name_scope" + argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" + } +} diff --git a/tensorflow/tools/api/golden/v1/tensorflow.keras.experimental.pbtxt b/tensorflow/tools/api/golden/v1/tensorflow.keras.experimental.pbtxt index bfd169a9b35..4a83b58df83 100644 --- a/tensorflow/tools/api/golden/v1/tensorflow.keras.experimental.pbtxt +++ b/tensorflow/tools/api/golden/v1/tensorflow.keras.experimental.pbtxt @@ -12,6 +12,10 @@ tf_module { name: "LinearCosineDecay" mtype: "" } + member { + name: "LinearModel" + mtype: "" + } member { name: "NoisyLinearCosineDecay" mtype: "" @@ -24,6 +28,10 @@ tf_module { name: "SequenceFeatures" mtype: "" } + member { + name: "WideDeepModel" + mtype: "" + } member_method { name: "export_saved_model" argspec: "args=[\'model\', \'saved_model_path\', \'custom_objects\', \'as_text\', \'input_signature\', \'serving_only\'], varargs=None, keywords=None, defaults=[\'None\', \'False\', \'None\', \'False\'], " diff --git a/tensorflow/tools/api/golden/v2/tensorflow.keras.experimental.-linear-model.pbtxt b/tensorflow/tools/api/golden/v2/tensorflow.keras.experimental.-linear-model.pbtxt new file mode 100644 index 00000000000..488b786eed8 --- /dev/null +++ b/tensorflow/tools/api/golden/v2/tensorflow.keras.experimental.-linear-model.pbtxt @@ -0,0 +1,315 @@ +path: "tensorflow.keras.experimental.LinearModel" +tf_class { + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + member { + name: "activity_regularizer" + mtype: "" + } + member { + name: "dtype" + mtype: "" + } + member { + name: "dynamic" + mtype: "" + } + member { + name: "inbound_nodes" + mtype: "" + } + member { + name: "input" + mtype: "" + } + member { + name: "input_mask" + mtype: "" + } + member { + name: "input_shape" + mtype: "" + } + member { + name: "input_spec" + mtype: "" + } + member { + name: "layers" + mtype: "" + } + member { + name: "losses" + mtype: "" + } + member { + name: "metrics" + mtype: "" + } + member { + name: "metrics_names" + mtype: "" + } + member { + name: "name" + mtype: "" + } + member { + name: "name_scope" + mtype: "" + } + member { + name: "non_trainable_variables" + mtype: "" + } + member { + name: "non_trainable_weights" + mtype: "" + } + member { + name: "outbound_nodes" + mtype: "" + } + member { + name: "output" + mtype: "" + } + member { + name: "output_mask" + mtype: "" + } + member { + name: "output_shape" + mtype: "" + } + member { + name: "run_eagerly" + mtype: "" + } + member { + name: "sample_weights" + mtype: "" + } + member { + name: "state_updates" + mtype: "" + } + member { + name: "stateful" + mtype: "" + } + member { + name: "submodules" + mtype: "" + } + member { + name: "trainable" + mtype: "" + } + member { + name: "trainable_variables" + mtype: "" + } + member { + name: "trainable_weights" + mtype: "" + } + member { + name: "updates" + mtype: "" + } + member { + name: "variables" + mtype: "" + } + member { + name: "weights" + mtype: "" + } + member_method { + name: "__init__" + argspec: "args=[\'self\', \'units\', \'activation\', \'use_bias\', \'kernel_initializer\', \'bias_initializer\', \'kernel_regularizer\', \'bias_regularizer\'], varargs=None, keywords=kwargs, defaults=[\'1\', \'None\', \'True\', \'glorot_uniform\', \'zeros\', \'None\', \'None\'], " + } + member_method { + name: "add_loss" + argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "add_metric" + argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " + } + member_method { + name: "add_update" + argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "add_variable" + argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" + } + member_method { + name: "add_weight" + argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'partitioner\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], " + } + member_method { + name: "apply" + argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" + } + member_method { + name: "build" + argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "call" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "compile" + argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'sample_weight_mode\', \'weighted_metrics\', \'target_tensors\', \'distribute\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " + } + member_method { + name: "compute_mask" + argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "compute_output_shape" + argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "compute_output_signature" + argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "count_params" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "evaluate" + argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], " + } + member_method { + name: "evaluate_generator" + argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " + } + member_method { + name: "fit" + argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'1\', \'1\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " + } + member_method { + name: "fit_generator" + argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " + } + member_method { + name: "from_config" + argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "get_config" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_mask_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_shape_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_layer" + argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " + } + member_method { + name: "get_losses_for" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_mask_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_shape_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_updates_for" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_weights" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "load_weights" + argspec: "args=[\'self\', \'filepath\', \'by_name\'], varargs=None, keywords=None, defaults=[\'False\'], " + } + member_method { + name: "predict" + argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], " + } + member_method { + name: "predict_generator" + argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " + } + member_method { + name: "predict_on_batch" + argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "reset_metrics" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "reset_states" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "save" + argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'include_optimizer\', \'save_format\'], varargs=None, keywords=None, defaults=[\'True\', \'True\', \'None\'], " + } + member_method { + name: "save_weights" + argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=None, defaults=[\'True\', \'None\'], " + } + member_method { + name: "set_weights" + argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "summary" + argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " + } + member_method { + name: "test_on_batch" + argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\'], " + } + member_method { + name: "to_json" + argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" + } + member_method { + name: "to_yaml" + argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" + } + member_method { + name: "train_on_batch" + argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\'], " + } + member_method { + name: "with_name_scope" + argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" + } +} diff --git a/tensorflow/tools/api/golden/v2/tensorflow.keras.experimental.-wide-deep-model.pbtxt b/tensorflow/tools/api/golden/v2/tensorflow.keras.experimental.-wide-deep-model.pbtxt new file mode 100644 index 00000000000..98c2dde203a --- /dev/null +++ b/tensorflow/tools/api/golden/v2/tensorflow.keras.experimental.-wide-deep-model.pbtxt @@ -0,0 +1,315 @@ +path: "tensorflow.keras.experimental.WideDeepModel" +tf_class { + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + is_instance: "" + member { + name: "activity_regularizer" + mtype: "" + } + member { + name: "dtype" + mtype: "" + } + member { + name: "dynamic" + mtype: "" + } + member { + name: "inbound_nodes" + mtype: "" + } + member { + name: "input" + mtype: "" + } + member { + name: "input_mask" + mtype: "" + } + member { + name: "input_shape" + mtype: "" + } + member { + name: "input_spec" + mtype: "" + } + member { + name: "layers" + mtype: "" + } + member { + name: "losses" + mtype: "" + } + member { + name: "metrics" + mtype: "" + } + member { + name: "metrics_names" + mtype: "" + } + member { + name: "name" + mtype: "" + } + member { + name: "name_scope" + mtype: "" + } + member { + name: "non_trainable_variables" + mtype: "" + } + member { + name: "non_trainable_weights" + mtype: "" + } + member { + name: "outbound_nodes" + mtype: "" + } + member { + name: "output" + mtype: "" + } + member { + name: "output_mask" + mtype: "" + } + member { + name: "output_shape" + mtype: "" + } + member { + name: "run_eagerly" + mtype: "" + } + member { + name: "sample_weights" + mtype: "" + } + member { + name: "state_updates" + mtype: "" + } + member { + name: "stateful" + mtype: "" + } + member { + name: "submodules" + mtype: "" + } + member { + name: "trainable" + mtype: "" + } + member { + name: "trainable_variables" + mtype: "" + } + member { + name: "trainable_weights" + mtype: "" + } + member { + name: "updates" + mtype: "" + } + member { + name: "variables" + mtype: "" + } + member { + name: "weights" + mtype: "" + } + member_method { + name: "__init__" + argspec: "args=[\'self\', \'linear_model\', \'dnn_model\', \'activation\'], varargs=None, keywords=kwargs, defaults=[\'None\'], " + } + member_method { + name: "add_loss" + argspec: "args=[\'self\', \'losses\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "add_metric" + argspec: "args=[\'self\', \'value\', \'aggregation\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " + } + member_method { + name: "add_update" + argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "add_variable" + argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None" + } + member_method { + name: "add_weight" + argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'partitioner\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], " + } + member_method { + name: "apply" + argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None" + } + member_method { + name: "build" + argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "call" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "compile" + argspec: "args=[\'self\', \'optimizer\', \'loss\', \'metrics\', \'loss_weights\', \'sample_weight_mode\', \'weighted_metrics\', \'target_tensors\', \'distribute\'], varargs=None, keywords=kwargs, defaults=[\'rmsprop\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], " + } + member_method { + name: "compute_mask" + argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "compute_output_shape" + argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "compute_output_signature" + argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "count_params" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "evaluate" + argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'verbose\', \'sample_weight\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'1\', \'None\', \'None\', \'None\', \'10\', \'1\', \'False\'], " + } + member_method { + name: "evaluate_generator" + argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " + } + member_method { + name: "fit" + argspec: "args=[\'self\', \'x\', \'y\', \'batch_size\', \'epochs\', \'verbose\', \'callbacks\', \'validation_split\', \'validation_data\', \'shuffle\', \'class_weight\', \'sample_weight\', \'initial_epoch\', \'steps_per_epoch\', \'validation_steps\', \'validation_freq\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'1\', \'1\', \'None\', \'0.0\', \'None\', \'True\', \'None\', \'None\', \'0\', \'None\', \'None\', \'1\', \'10\', \'1\', \'False\'], " + } + member_method { + name: "fit_generator" + argspec: "args=[\'self\', \'generator\', \'steps_per_epoch\', \'epochs\', \'verbose\', \'callbacks\', \'validation_data\', \'validation_steps\', \'validation_freq\', \'class_weight\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'shuffle\', \'initial_epoch\'], varargs=None, keywords=None, defaults=[\'None\', \'1\', \'1\', \'None\', \'None\', \'None\', \'1\', \'None\', \'10\', \'1\', \'False\', \'True\', \'0\'], " + } + member_method { + name: "from_config" + argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " + } + member_method { + name: "get_config" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_mask_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_input_shape_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_layer" + argspec: "args=[\'self\', \'name\', \'index\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " + } + member_method { + name: "get_losses_for" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_mask_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_output_shape_at" + argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_updates_for" + argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "get_weights" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "load_weights" + argspec: "args=[\'self\', \'filepath\', \'by_name\'], varargs=None, keywords=None, defaults=[\'False\'], " + } + member_method { + name: "predict" + argspec: "args=[\'self\', \'x\', \'batch_size\', \'verbose\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\'], varargs=None, keywords=None, defaults=[\'None\', \'0\', \'None\', \'None\', \'10\', \'1\', \'False\'], " + } + member_method { + name: "predict_generator" + argspec: "args=[\'self\', \'generator\', \'steps\', \'callbacks\', \'max_queue_size\', \'workers\', \'use_multiprocessing\', \'verbose\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'10\', \'1\', \'False\', \'0\'], " + } + member_method { + name: "predict_on_batch" + argspec: "args=[\'self\', \'x\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "reset_metrics" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "reset_states" + argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "save" + argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'include_optimizer\', \'save_format\'], varargs=None, keywords=None, defaults=[\'True\', \'True\', \'None\'], " + } + member_method { + name: "save_weights" + argspec: "args=[\'self\', \'filepath\', \'overwrite\', \'save_format\'], varargs=None, keywords=None, defaults=[\'True\', \'None\'], " + } + member_method { + name: "set_weights" + argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None" + } + member_method { + name: "summary" + argspec: "args=[\'self\', \'line_length\', \'positions\', \'print_fn\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\'], " + } + member_method { + name: "test_on_batch" + argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'reset_metrics\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'True\'], " + } + member_method { + name: "to_json" + argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" + } + member_method { + name: "to_yaml" + argspec: "args=[\'self\'], varargs=None, keywords=kwargs, defaults=None" + } + member_method { + name: "train_on_batch" + argspec: "args=[\'self\', \'x\', \'y\', \'sample_weight\', \'class_weight\', \'reset_metrics\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'True\'], " + } + member_method { + name: "with_name_scope" + argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None" + } +} diff --git a/tensorflow/tools/api/golden/v2/tensorflow.keras.experimental.pbtxt b/tensorflow/tools/api/golden/v2/tensorflow.keras.experimental.pbtxt index bfd169a9b35..4a83b58df83 100644 --- a/tensorflow/tools/api/golden/v2/tensorflow.keras.experimental.pbtxt +++ b/tensorflow/tools/api/golden/v2/tensorflow.keras.experimental.pbtxt @@ -12,6 +12,10 @@ tf_module { name: "LinearCosineDecay" mtype: "" } + member { + name: "LinearModel" + mtype: "" + } member { name: "NoisyLinearCosineDecay" mtype: "" @@ -24,6 +28,10 @@ tf_module { name: "SequenceFeatures" mtype: "" } + member { + name: "WideDeepModel" + mtype: "" + } member_method { name: "export_saved_model" argspec: "args=[\'model\', \'saved_model_path\', \'custom_objects\', \'as_text\', \'input_signature\', \'serving_only\'], varargs=None, keywords=None, defaults=[\'None\', \'False\', \'None\', \'False\'], "