Add test for training and serving using KPL.

PiperOrigin-RevId: 327374313
Change-Id: I6d10f956cf023f39f9f3d67e5ccaa64a7e3c4491
This commit is contained in:
Yuefeng Zhou 2020-08-18 22:26:52 -07:00 committed by TensorFlower Gardener
parent 7e7641d95c
commit 7c8b6efc14
2 changed files with 236 additions and 0 deletions

View File

@ -815,3 +815,28 @@ distribute_py_test(
"@absl_py//absl/testing:parameterized",
],
)
py_test(
name = "parameter_server_training_test",
srcs = ["parameter_server_training_test.py"],
python_version = "PY3",
shard_count = 1,
tags = ["no_oss"], # TODO(b/162119374): enable it in OSS.
deps = [
"//tensorflow/python:constant_op",
"//tensorflow/python:dtypes",
"//tensorflow/python:init_ops_v2",
"//tensorflow/python:training_server_lib",
"//tensorflow/python:variables",
"//tensorflow/python/compat:v2_compat",
"//tensorflow/python/data/ops:dataset_ops",
"//tensorflow/python/distribute:multi_worker_test_base",
"//tensorflow/python/distribute:sharded_variable",
"//tensorflow/python/distribute/client:parameter_server_client",
"//tensorflow/python/distribute/cluster_resolver:cluster_resolver_lib",
"//tensorflow/python/eager:backprop",
"//tensorflow/python/eager:def_function",
"//tensorflow/python/eager:test",
"//tensorflow/python/keras",
],
)

View File

@ -0,0 +1,211 @@
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for ParameterServerClient and Keras models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
import tempfile
from tensorflow.python import keras
from tensorflow.python.compat import v2_compat
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.distribute import multi_worker_test_base
from tensorflow.python.distribute.client import parameter_server_client
from tensorflow.python.distribute.cluster_resolver import SimpleClusterResolver
from tensorflow.python.eager import backprop
from tensorflow.python.eager import def_function
from tensorflow.python.eager import test
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import tensor_spec
from tensorflow.python.keras.layers.preprocessing import string_lookup
from tensorflow.python.keras.optimizer_v2 import rmsprop
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn
from tensorflow.python.ops.losses import loss_reduction
from tensorflow.python.training.server_lib import ClusterSpec
def make_client(num_workers, num_ps):
cluster_def = multi_worker_test_base.create_in_process_cluster(
num_workers=num_workers, num_ps=num_ps, rpc_layer="grpc")
cluster_def["chief"] = [
"localhost:%d" % multi_worker_test_base.pick_unused_port()
]
cluster_resolver = SimpleClusterResolver(
ClusterSpec(cluster_def), rpc_layer="grpc")
return parameter_server_client.ParameterServerClient(cluster_resolver)
class KPLTest(test.TestCase):
@classmethod
def setUpClass(cls):
super(KPLTest, cls).setUpClass()
cls.client = make_client(num_workers=3, num_ps=2)
def testTrainAndServe(self):
# These vocabularies usually come from TFT or a Beam pipeline.
feature_vocab = [
"avenger", "ironman", "batman", "hulk", "spiderman", "kingkong",
"wonder_woman"
]
label_vocab = ["yes", "no"]
with self.client.context():
# Define KPLs under client's context. Right now, if they have look up
# tables, they will be created on the client. Their variables will be
# created on PS. Ideally they should be cached on each worker since they
# will not be changed in a training step.
feature_lookup_layer = string_lookup.StringLookup()
raw_feature_input = keras.layers.Input(
shape=(3,), dtype=dtypes.string, name="feature", ragged=True)
feature_id_input = feature_lookup_layer(raw_feature_input)
# Model creates variables as well.
feature_ps = keras.Model({"features": raw_feature_input},
feature_id_input)
# TODO(yuefengz): adapt may be expensive for large vocab?
feature_lookup_layer.adapt(feature_vocab)
label_lookup_layer = string_lookup.StringLookup(
num_oov_indices=0, mask_token=None)
raw_label_input = keras.layers.Input(
shape=(), dtype=dtypes.string, name="label")
label_id_input = label_lookup_layer(raw_label_input)
label_ps = keras.Model({"label": raw_label_input}, label_id_input)
label_lookup_layer.adapt(label_vocab)
# Only needed for serving.
label_inverse_lookup_layer = string_lookup.StringLookup(
num_oov_indices=1,
mask_token=None,
vocabulary=label_lookup_layer.get_vocabulary(),
invert=True)
def dataset_fn():
def feature_and_label_gen():
while True:
features = random.sample(feature_vocab, 3)
label = "yes" if "avenger" in features else "no"
yield {"features": features, "label": label}
# The dataset will be created on the client?
raw_dataset = dataset_ops.Dataset.from_generator(
feature_and_label_gen,
output_types={
"features": dtypes.string,
"label": dtypes.string
}).shuffle(200).batch(32)
preproc_dataset = raw_dataset.map(
lambda x: { # pylint: disable=g-long-lambda
"features": feature_ps(x["features"]),
"label": label_ps(x["label"])
})
train_dataset = preproc_dataset.map(lambda x: ( # pylint: disable=g-long-lambda
{
"features": x["features"]
}, [x["label"]]))
return train_dataset
distributed_dataset = self.client.create_per_worker_dataset(dataset_fn)
model_input = keras.layers.Input(
shape=(3,), dtype=dtypes.int64, name="model_input")
emb_output = keras.layers.Embedding(
input_dim=len(feature_lookup_layer.get_vocabulary()), output_dim=20)(
model_input)
emb_output = math_ops.reduce_mean(emb_output, axis=1)
dense_output = keras.layers.Dense(
units=1, activation="sigmoid")(
emb_output)
model = keras.Model({"features": model_input}, dense_output)
optimizer = rmsprop.RMSprop(learning_rate=0.01)
accuracy = keras.metrics.Accuracy()
@def_function.function
def worker_fn(iterator):
batch_data, labels = next(iterator)
with backprop.GradientTape() as tape:
pred = model(batch_data, training=True)
loss = nn.compute_average_loss(
keras.losses.BinaryCrossentropy(
reduction=loss_reduction.ReductionV2.NONE)(labels, pred))
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
actual_pred = math_ops.cast(math_ops.greater(pred, 0.5), dtypes.int64)
accuracy.update_state(labels, actual_pred)
distributed_iterator = iter(distributed_dataset)
for _ in range(10):
self.client.schedule(worker_fn, args=(distributed_iterator,))
self.client.join()
self.assertGreaterEqual(accuracy.result().numpy(), 0.5)
# Create a saved model.
model.feature_ps = feature_ps
model.label_ps = label_ps
model.label_inverse_lookup_layer = label_inverse_lookup_layer
def create_serving_signature(model):
@def_function.function
def serve_fn(raw_features):
raw_features = array_ops.expand_dims(raw_features, axis=0)
transformed_features = model.feature_ps(raw_features)
outputs = model(transformed_features)
outputs = array_ops.squeeze(outputs, axis=0)
outputs = math_ops.cast(math_ops.greater(outputs, 0.5), dtypes.int64)
decoded_outputs = model.label_inverse_lookup_layer(outputs)
return array_ops.squeeze(decoded_outputs, axis=0)
# serving does NOT have batch dimension
return serve_fn.get_concrete_function(
tensor_spec.TensorSpec(
shape=(3), dtype=dtypes.string, name="example"))
serving_fn = create_serving_signature(model)
saved_model_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
model.save(saved_model_dir, signatures={"serving_default": serving_fn})
# Test the saved_model.
loaded_serving_fn = keras.saving.save.load_model(
saved_model_dir).signatures["serving_default"]
# check the result w/ and w/o avenger.
prediction0 = loaded_serving_fn(
constant_op.constant(["avenger", "ironman", "avenger"]))["output_0"]
self.assertIn(prediction0, ("yes", "no"))
prediction1 = loaded_serving_fn(
constant_op.constant(["ironman", "ironman", "unkonwn"]))["output_0"]
self.assertIn(prediction1, ("yes", "no"))
if __name__ == "__main__":
v2_compat.enable_v2_behavior()
test.main()