Add test for training and serving using KPL.
PiperOrigin-RevId: 327374313 Change-Id: I6d10f956cf023f39f9f3d67e5ccaa64a7e3c4491
This commit is contained in:
parent
7e7641d95c
commit
7c8b6efc14
@ -815,3 +815,28 @@ distribute_py_test(
|
||||
"@absl_py//absl/testing:parameterized",
|
||||
],
|
||||
)
|
||||
|
||||
py_test(
|
||||
name = "parameter_server_training_test",
|
||||
srcs = ["parameter_server_training_test.py"],
|
||||
python_version = "PY3",
|
||||
shard_count = 1,
|
||||
tags = ["no_oss"], # TODO(b/162119374): enable it in OSS.
|
||||
deps = [
|
||||
"//tensorflow/python:constant_op",
|
||||
"//tensorflow/python:dtypes",
|
||||
"//tensorflow/python:init_ops_v2",
|
||||
"//tensorflow/python:training_server_lib",
|
||||
"//tensorflow/python:variables",
|
||||
"//tensorflow/python/compat:v2_compat",
|
||||
"//tensorflow/python/data/ops:dataset_ops",
|
||||
"//tensorflow/python/distribute:multi_worker_test_base",
|
||||
"//tensorflow/python/distribute:sharded_variable",
|
||||
"//tensorflow/python/distribute/client:parameter_server_client",
|
||||
"//tensorflow/python/distribute/cluster_resolver:cluster_resolver_lib",
|
||||
"//tensorflow/python/eager:backprop",
|
||||
"//tensorflow/python/eager:def_function",
|
||||
"//tensorflow/python/eager:test",
|
||||
"//tensorflow/python/keras",
|
||||
],
|
||||
)
|
||||
|
@ -0,0 +1,211 @@
|
||||
# Lint as: python3
|
||||
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Tests for ParameterServerClient and Keras models."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import random
|
||||
import tempfile
|
||||
|
||||
from tensorflow.python import keras
|
||||
from tensorflow.python.compat import v2_compat
|
||||
from tensorflow.python.data.ops import dataset_ops
|
||||
from tensorflow.python.distribute import multi_worker_test_base
|
||||
from tensorflow.python.distribute.client import parameter_server_client
|
||||
from tensorflow.python.distribute.cluster_resolver import SimpleClusterResolver
|
||||
from tensorflow.python.eager import backprop
|
||||
from tensorflow.python.eager import def_function
|
||||
from tensorflow.python.eager import test
|
||||
from tensorflow.python.framework import constant_op
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import tensor_spec
|
||||
from tensorflow.python.keras.layers.preprocessing import string_lookup
|
||||
from tensorflow.python.keras.optimizer_v2 import rmsprop
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import math_ops
|
||||
from tensorflow.python.ops import nn
|
||||
from tensorflow.python.ops.losses import loss_reduction
|
||||
from tensorflow.python.training.server_lib import ClusterSpec
|
||||
|
||||
|
||||
def make_client(num_workers, num_ps):
|
||||
cluster_def = multi_worker_test_base.create_in_process_cluster(
|
||||
num_workers=num_workers, num_ps=num_ps, rpc_layer="grpc")
|
||||
cluster_def["chief"] = [
|
||||
"localhost:%d" % multi_worker_test_base.pick_unused_port()
|
||||
]
|
||||
cluster_resolver = SimpleClusterResolver(
|
||||
ClusterSpec(cluster_def), rpc_layer="grpc")
|
||||
return parameter_server_client.ParameterServerClient(cluster_resolver)
|
||||
|
||||
|
||||
class KPLTest(test.TestCase):
|
||||
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
super(KPLTest, cls).setUpClass()
|
||||
cls.client = make_client(num_workers=3, num_ps=2)
|
||||
|
||||
def testTrainAndServe(self):
|
||||
# These vocabularies usually come from TFT or a Beam pipeline.
|
||||
feature_vocab = [
|
||||
"avenger", "ironman", "batman", "hulk", "spiderman", "kingkong",
|
||||
"wonder_woman"
|
||||
]
|
||||
label_vocab = ["yes", "no"]
|
||||
|
||||
with self.client.context():
|
||||
|
||||
# Define KPLs under client's context. Right now, if they have look up
|
||||
# tables, they will be created on the client. Their variables will be
|
||||
# created on PS. Ideally they should be cached on each worker since they
|
||||
# will not be changed in a training step.
|
||||
feature_lookup_layer = string_lookup.StringLookup()
|
||||
raw_feature_input = keras.layers.Input(
|
||||
shape=(3,), dtype=dtypes.string, name="feature", ragged=True)
|
||||
feature_id_input = feature_lookup_layer(raw_feature_input)
|
||||
|
||||
# Model creates variables as well.
|
||||
feature_ps = keras.Model({"features": raw_feature_input},
|
||||
feature_id_input)
|
||||
|
||||
# TODO(yuefengz): adapt may be expensive for large vocab?
|
||||
feature_lookup_layer.adapt(feature_vocab)
|
||||
|
||||
label_lookup_layer = string_lookup.StringLookup(
|
||||
num_oov_indices=0, mask_token=None)
|
||||
raw_label_input = keras.layers.Input(
|
||||
shape=(), dtype=dtypes.string, name="label")
|
||||
label_id_input = label_lookup_layer(raw_label_input)
|
||||
label_ps = keras.Model({"label": raw_label_input}, label_id_input)
|
||||
|
||||
label_lookup_layer.adapt(label_vocab)
|
||||
|
||||
# Only needed for serving.
|
||||
label_inverse_lookup_layer = string_lookup.StringLookup(
|
||||
num_oov_indices=1,
|
||||
mask_token=None,
|
||||
vocabulary=label_lookup_layer.get_vocabulary(),
|
||||
invert=True)
|
||||
|
||||
def dataset_fn():
|
||||
|
||||
def feature_and_label_gen():
|
||||
while True:
|
||||
features = random.sample(feature_vocab, 3)
|
||||
label = "yes" if "avenger" in features else "no"
|
||||
yield {"features": features, "label": label}
|
||||
|
||||
# The dataset will be created on the client?
|
||||
raw_dataset = dataset_ops.Dataset.from_generator(
|
||||
feature_and_label_gen,
|
||||
output_types={
|
||||
"features": dtypes.string,
|
||||
"label": dtypes.string
|
||||
}).shuffle(200).batch(32)
|
||||
preproc_dataset = raw_dataset.map(
|
||||
lambda x: { # pylint: disable=g-long-lambda
|
||||
"features": feature_ps(x["features"]),
|
||||
"label": label_ps(x["label"])
|
||||
})
|
||||
train_dataset = preproc_dataset.map(lambda x: ( # pylint: disable=g-long-lambda
|
||||
{
|
||||
"features": x["features"]
|
||||
}, [x["label"]]))
|
||||
return train_dataset
|
||||
|
||||
distributed_dataset = self.client.create_per_worker_dataset(dataset_fn)
|
||||
|
||||
model_input = keras.layers.Input(
|
||||
shape=(3,), dtype=dtypes.int64, name="model_input")
|
||||
emb_output = keras.layers.Embedding(
|
||||
input_dim=len(feature_lookup_layer.get_vocabulary()), output_dim=20)(
|
||||
model_input)
|
||||
emb_output = math_ops.reduce_mean(emb_output, axis=1)
|
||||
dense_output = keras.layers.Dense(
|
||||
units=1, activation="sigmoid")(
|
||||
emb_output)
|
||||
model = keras.Model({"features": model_input}, dense_output)
|
||||
optimizer = rmsprop.RMSprop(learning_rate=0.01)
|
||||
accuracy = keras.metrics.Accuracy()
|
||||
|
||||
@def_function.function
|
||||
def worker_fn(iterator):
|
||||
batch_data, labels = next(iterator)
|
||||
with backprop.GradientTape() as tape:
|
||||
pred = model(batch_data, training=True)
|
||||
loss = nn.compute_average_loss(
|
||||
keras.losses.BinaryCrossentropy(
|
||||
reduction=loss_reduction.ReductionV2.NONE)(labels, pred))
|
||||
gradients = tape.gradient(loss, model.trainable_variables)
|
||||
|
||||
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
|
||||
|
||||
actual_pred = math_ops.cast(math_ops.greater(pred, 0.5), dtypes.int64)
|
||||
accuracy.update_state(labels, actual_pred)
|
||||
|
||||
distributed_iterator = iter(distributed_dataset)
|
||||
for _ in range(10):
|
||||
self.client.schedule(worker_fn, args=(distributed_iterator,))
|
||||
self.client.join()
|
||||
self.assertGreaterEqual(accuracy.result().numpy(), 0.5)
|
||||
|
||||
# Create a saved model.
|
||||
model.feature_ps = feature_ps
|
||||
model.label_ps = label_ps
|
||||
model.label_inverse_lookup_layer = label_inverse_lookup_layer
|
||||
|
||||
def create_serving_signature(model):
|
||||
|
||||
@def_function.function
|
||||
def serve_fn(raw_features):
|
||||
raw_features = array_ops.expand_dims(raw_features, axis=0)
|
||||
transformed_features = model.feature_ps(raw_features)
|
||||
outputs = model(transformed_features)
|
||||
outputs = array_ops.squeeze(outputs, axis=0)
|
||||
outputs = math_ops.cast(math_ops.greater(outputs, 0.5), dtypes.int64)
|
||||
decoded_outputs = model.label_inverse_lookup_layer(outputs)
|
||||
return array_ops.squeeze(decoded_outputs, axis=0)
|
||||
|
||||
# serving does NOT have batch dimension
|
||||
return serve_fn.get_concrete_function(
|
||||
tensor_spec.TensorSpec(
|
||||
shape=(3), dtype=dtypes.string, name="example"))
|
||||
|
||||
serving_fn = create_serving_signature(model)
|
||||
|
||||
saved_model_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
|
||||
model.save(saved_model_dir, signatures={"serving_default": serving_fn})
|
||||
|
||||
# Test the saved_model.
|
||||
loaded_serving_fn = keras.saving.save.load_model(
|
||||
saved_model_dir).signatures["serving_default"]
|
||||
|
||||
# check the result w/ and w/o avenger.
|
||||
prediction0 = loaded_serving_fn(
|
||||
constant_op.constant(["avenger", "ironman", "avenger"]))["output_0"]
|
||||
self.assertIn(prediction0, ("yes", "no"))
|
||||
|
||||
prediction1 = loaded_serving_fn(
|
||||
constant_op.constant(["ironman", "ironman", "unkonwn"]))["output_0"]
|
||||
self.assertIn(prediction1, ("yes", "no"))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
v2_compat.enable_v2_behavior()
|
||||
test.main()
|
Loading…
Reference in New Issue
Block a user