Update from master

This commit is contained in:
Rahul Huilgol 2020-02-25 22:38:29 +00:00
commit 7ba6a92ff9
786 changed files with 20939 additions and 20757 deletions

View File

@ -37,7 +37,6 @@
# v2: Build TF v2
#
# Feature and Third party library support options:
# xla: Build TF with XLA
# using_cuda: CUDA is available to build system.
# cuda: Build with full cuda support.
# rocm: Build with AMD GPU support (rocm).
@ -227,6 +226,14 @@ build --noincompatible_remove_legacy_whole_archive
# https://github.com/tensorflow/community/pull/179
build --noincompatible_prohibit_aapt1
# Enable XLA
build --action_env=TF_ENABLE_XLA=1
build --define=with_xla_support=true
# Keep config XLA until all build scripts are cleaned up.
build:xla --action_env=TF_ENABLE_XLA=1
build:xla --define=with_xla_support=true
# Modular TF build options
build:dynamic_kernels --define=dynamic_loaded_kernels=true
build:dynamic_kernels --copt=-DAUTOLOAD_DYNAMIC_KERNELS
@ -312,10 +319,6 @@ build:v2 --action_env=TF2_BEHAVIOR=1
build --config=v2
test --config=v2
# Enable XLA
build:xla --action_env=TF_ENABLE_XLA=1
build:xla --define=with_xla_support=true
# BEGIN TF REMOTE BUILD EXECUTION OPTIONS
# Options when using remote execution
# WARNING: THESE OPTIONS WONT WORK IF YOU DO NOT HAVE PROPER AUTHENTICATION AND PERMISSIONS
@ -348,7 +351,6 @@ build:rbe_linux --host_java_toolchain=@bazel_tools//tools/jdk:toolchain_hostjdk8
build:rbe_linux --java_toolchain=@bazel_tools//tools/jdk:toolchain_hostjdk8
# Non-rbe settings we should include because we do not run configure
build:rbe_linux --config=xla
build:rbe_linux --config=avx_linux
build:rbe_linux --config=short_logs
# TODO(gunan): Check why we need this specified in rbe, but not in other builds.
@ -386,9 +388,8 @@ build:rbe_linux_py2 --python_path="/usr/bin/python2"
build:rbe_linux_py2 --repo_env=TF_PYTHON_CONFIG_REPO="@org_tensorflow//third_party/toolchains/preconfig/ubuntu16.04/py"
build:rbe_linux_py3 --config=rbe_linux
build:rbe_linux_py3 --repo_env=PYTHON_BIN_PATH="/usr/bin/python3"
build:rbe_linux_py3 --python_path="/usr/bin/python3"
build:rbe_linux_py3 --repo_env=TF_PYTHON_CONFIG_REPO="@org_tensorflow//third_party/toolchains/preconfig/ubuntu16.04/py3"
build:rbe_linux_py3 --repo_env=TF_PYTHON_CONFIG_REPO="@ubuntu16.04-manylinux2010-py3_config_python"
build:rbe_win --config=rbe
build:rbe_win --crosstool_top="@org_tensorflow//third_party/toolchains/preconfig/win_1803/bazel_121:toolchain"
@ -405,9 +406,7 @@ build:rbe_win --define=override_eigen_strong_inline=true
build:rbe_win --jobs=500
build:rbe_win_py37 --config=rbe
build:rbe_win_py37 --repo_env=PYTHON_BIN_PATH=C:\\Python37\\python.exe
build:rbe_win_py37 --repo_env=PYTHON_LIB_PATH=C:\\Python37\\lib\\site-packages
build:rbe_win_py37 --repo_env=TF_PYTHON_CONFIG_REPO=@org_tensorflow//third_party/toolchains/preconfig/win_1803/py37
build:rbe_win_py37 --repo_env=TF_PYTHON_CONFIG_REPO="@windows_py37_config_python"
build:rbe_win_py37 --python_path=C:\\Python37\\python.exe
build:rbe_win_py38 --config=rbe

1
.gitignore vendored
View File

@ -22,6 +22,7 @@ tensorflow/contrib/cmake/_build/
/tensorflow/python/framework/fast_tensor_util.cpp
/tensorflow/lite/gen/**
/tensorflow/lite/tools/make/downloads/**
/tensorflow/lite/tools/make/gen/**
/api_init_files_list.txt
/estimator_api_init_files_list.txt
*.whl

View File

@ -70,7 +70,7 @@ $ python
3
>>> hello = tf.constant('Hello, TensorFlow!')
>>> hello.numpy()
'Hello, TensorFlow!'
b'Hello, TensorFlow!'
```
For more examples, see the

View File

@ -1390,10 +1390,6 @@ def main():
else:
environ_cp['TF_CONFIGURE_IOS'] = '0'
xla_enabled_by_default = is_linux() or is_macos()
set_build_var(environ_cp, 'TF_ENABLE_XLA', 'XLA JIT', 'with_xla_support',
xla_enabled_by_default, 'xla')
set_action_env_var(
environ_cp,
'TF_NEED_OPENCL_SYCL',

View File

@ -205,6 +205,7 @@ tf_cuda_cc_test(
"//tensorflow/core:test",
"//tensorflow/core:test_main",
"//tensorflow/core/distributed_runtime/rpc:grpc_server_lib",
"//tensorflow/core/platform:casts",
"@com_google_absl//absl/strings",
],
)

View File

@ -874,12 +874,12 @@ TF_CAPI_EXPORT extern bool TFE_ContextCheckAlive(TFE_Context* ctx,
#endif // !IS_MOBILE_PLATFORM
}
TF_CAPI_EXPORT extern void TFE_ContextClearRemoteExecutors(TFE_Context* ctx,
TF_Status* status) {
TF_CAPI_EXPORT extern void TFE_ContextAsyncWait(TFE_Context* ctx,
TF_Status* status) {
#if defined(IS_MOBILE_PLATFORM)
status->status = tensorflow::Status::OK();
#else // !defined(IS_MOBILE_PLATFORM)
status->status = ctx->context->ClearRemoteExecutors();
status->status = ctx->context->SyncExecutors();
#endif // !IS_MOBILE_PLATFORM
}
@ -1450,6 +1450,25 @@ void TFE_OpSetAttrFunctionList(TFE_Op* op, const char* attr_name,
}
}
void TFE_OpSetAttrValueProto(const TFE_Op* op, const char* attr_name,
const void* proto, size_t proto_len,
TF_Status* status) {
tensorflow::AttrValue attr_value;
if (!attr_value.ParseFromArray(proto, proto_len)) {
status->status =
tensorflow::errors::InvalidArgument("Unparseable AttrValue proto");
return;
}
if (op == nullptr || op->operation == nullptr) {
status->status = tensorflow::errors::InvalidArgument(
"Got a null or uninitialized `op` argument");
return;
}
auto operation = tensorflow::down_cast<tensorflow::OperationInterface*>(
op->operation.get());
operation->MutableAttrs()->Set(attr_name, attr_value);
}
TF_CAPI_EXPORT extern int TFE_OpGetInputLength(TFE_Op* op,
const char* input_name,
TF_Status* status) {
@ -1606,7 +1625,7 @@ void TFE_ContextEndStep(TFE_Context* ctx) { ctx->context->EndStep(); }
void TFE_OpGetAttrs(TFE_Op* op, TFE_OpAttrs* attrs) {
auto operation = tensorflow::down_cast<tensorflow::OperationInterface*>(
op->operation.get());
*attrs = TFE_OpAttrs(&operation->Attrs());
*attrs = TFE_OpAttrs(&operation->Attrs(), op->operation->Name().c_str());
}
void TFE_OpAddAttrs(TFE_Op* op, const TFE_OpAttrs* attrs) {
@ -1620,6 +1639,14 @@ void TFE_OpAddAttrs(TFE_Op* op, const TFE_OpAttrs* attrs) {
}
}
void TFE_OpAttrsSerialize(const TFE_OpAttrs* attrs, TF_Buffer* buf,
TF_Status* status) {
tensorflow::NameAttrList name_and_attrs;
attrs->attributes->FillAttrValueMap(name_and_attrs.mutable_attr());
name_and_attrs.set_name(attrs->name);
status->status = MessageToBuffer(name_and_attrs, buf);
}
namespace tensorflow {
void SetOpAttrValueScalar(TFE_Context* ctx, TFE_Op* op,
const tensorflow::AttrValue& default_value,
@ -1740,7 +1767,7 @@ class CustomDeviceAPI : public tensorflow::CustomDevice {
}
std::vector<TFE_TensorHandle*> outputs(*num_retvals);
TF_Status status;
TFE_OpAttrs attributes(&op->Attrs());
TFE_OpAttrs attributes(&op->Attrs(), op->Name().c_str());
device_.execute(inputs.size(), inputs.data(), op->Name().c_str(),
&attributes, num_retvals, outputs.data(), &status, info_);
if (status.status.ok()) {

View File

@ -382,9 +382,11 @@ TF_CAPI_EXPORT extern bool TFE_ContextCheckAlive(TFE_Context* ctx,
const char* worker_name,
TF_Status* status);
// Clear pending streaming requests and error statuses on remote executors.
TF_CAPI_EXPORT extern void TFE_ContextClearRemoteExecutors(TFE_Context* ctx,
TF_Status* status);
// Sync pending nodes in local executors (including the context default executor
// and thread executors) and streaming requests to remote executors, and get the
// combined status.
TF_CAPI_EXPORT extern void TFE_ContextAsyncWait(TFE_Context* ctx,
TF_Status* status);
// If the TensorHandle is copied to another device as part of an op execution,
// the copy is destroyed after the op has executed. Enabling implicit mirroring
@ -441,6 +443,21 @@ TF_CAPI_EXPORT extern void TFE_OpGetAttrs(TFE_Op* op, TFE_OpAttrs* attrs);
// Does not overwrite or update existing attributes, but adds new ones.
TF_CAPI_EXPORT extern void TFE_OpAddAttrs(TFE_Op* op, const TFE_OpAttrs* attrs);
// Serialize `attrs` as a tensorflow::NameAttrList protocol buffer (into `buf`),
// containing the op name and a map of its attributes.
TF_CAPI_EXPORT extern void TFE_OpAttrsSerialize(const TFE_OpAttrs* attrs,
TF_Buffer* buf,
TF_Status* status);
// Set an op's attribute from a serialized AttrValue protocol buffer.
//
// Analogous to TF_SetAttrValueProto for building graph operations.
TF_CAPI_EXPORT extern void TFE_OpSetAttrValueProto(const TFE_Op* op,
const char* attr_name,
const void* proto,
size_t proto_len,
TF_Status* status);
#define TFE_CUSTOM_DEVICE_VERSION 1
// Struct to be filled in

View File

@ -236,12 +236,16 @@ struct TFE_Executor {
tensorflow::EagerExecutor* unowned_executor;
};
// An equivalent of a tensorflow::NameAttrList protocol buffer, but used in ways
// that sometimes do not require serialization.
struct TFE_OpAttrs {
explicit TFE_OpAttrs() : attributes(nullptr) {}
explicit TFE_OpAttrs() : name(nullptr), attributes(nullptr) {}
explicit TFE_OpAttrs(const tensorflow::AttrBuilder* value)
: attributes(value) {}
explicit TFE_OpAttrs(const tensorflow::AttrBuilder* value,
const char* op_name)
: name(op_name), attributes(value) {}
const char* name;
const tensorflow::AttrBuilder* attributes;
};

View File

@ -18,6 +18,7 @@ limitations under the License.
#include "tensorflow/c/eager/c_api_internal.h"
#include "tensorflow/c/eager/c_api_test_util.h"
#include "tensorflow/core/distributed_runtime/rpc/grpc_server_lib.h"
#include "tensorflow/core/platform/casts.h"
#include "tensorflow/core/platform/protobuf.h"
#include "tensorflow/core/platform/test.h"
#include "tensorflow/core/protobuf/cluster.pb.h"
@ -127,7 +128,7 @@ void TestRemoteExecute(bool async) {
TEST(CAPI, RemoteExecute) { TestRemoteExecute(false); }
TEST(CAPI, RemoteExecuteAsync) { TestRemoteExecute(true); }
void TestRemoteExecuteSilentCopies(bool async) {
void TestRemoteExecuteSilentCopies(bool async, bool remote) {
tensorflow::ServerDef server_def = GetServerDef(3);
// This server def has the task index set to 0.
@ -166,10 +167,14 @@ void TestRemoteExecuteSilentCopies(bool async) {
auto* h1_task2 =
TFE_TensorHandleCopyToDevice(h1_task0, ctx, task2_name, status);
ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
TFE_TensorHandleEnableImplicitMirroring(h1_task2, status);
EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
// Handles are on task0 (local), and task2, but op is on task1.
TFE_Op* matmul = MatMulOp(ctx, h0_task0, h1_task2);
TFE_OpSetDevice(matmul, task1_name, status);
if (remote) {
TFE_OpSetDevice(matmul, task1_name, status);
}
EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
TFE_TensorHandle* retvals[1];
@ -177,6 +182,17 @@ void TestRemoteExecuteSilentCopies(bool async) {
TFE_Execute(matmul, &retvals[0], &num_retvals, status);
EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
// TODO(gjn): Add support for waiting on async local mirrors
if (!async) {
auto remote_arg = tensorflow::down_cast<tensorflow::TensorHandleInterface*>(
h1_task2->handle.get())
->Handle();
auto op = tensorflow::down_cast<tensorflow::OperationInterface*>(
matmul->operation.get());
// The input handles should never change since they have been mirrored.
ASSERT_EQ(op->GetInput(1), remote_arg);
}
auto* retval_task0 = TFE_TensorHandleCopyToDevice(
retvals[0], ctx, "/job:localhost/replica:0/task:0/device:CPU:0", status);
ASSERT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
@ -213,9 +229,17 @@ void TestRemoteExecuteSilentCopies(bool async) {
worker_server2.release();
}
TEST(CAPI, RemoteExecuteSilentCopies) { TestRemoteExecuteSilentCopies(false); }
TEST(CAPI, RemoteExecuteSilentCopies) {
TestRemoteExecuteSilentCopies(false, true);
}
TEST(CAPI, RemoteExecuteSilentCopiesAsync) {
TestRemoteExecuteSilentCopies(true);
TestRemoteExecuteSilentCopies(true, true);
}
TEST(CAPI, RemoteExecuteSilentCopiesLocal) {
TestRemoteExecuteSilentCopies(false, false);
}
TEST(CAPI, RemoteExecuteSilentCopiesLocalAsync) {
TestRemoteExecuteSilentCopies(true, false);
}
void TestRemoteExecuteDeleteContextWithOutstandingRPC(bool async) {

View File

@ -416,12 +416,23 @@ void TensorHandleSilentCopy(bool async,
hgpu->handle.get())
->Handle();
// The input handles should never change since they have been mirrored.
auto op = tensorflow::down_cast<tensorflow::OperationInterface*>(
matmul->operation.get());
ASSERT_EQ(op->GetInput(0), arg0);
ASSERT_EQ(op->GetInput(1), arg1);
if (!async) {
// The input handles should never change since they have been mirrored.
ASSERT_EQ(op->GetInput(0), arg0);
ASSERT_EQ(op->GetInput(1), arg1);
} else {
if (cpu_op) {
ASSERT_EQ(op->GetInput(0), arg0);
// The GPU handle should be replaced with a CPU copy
ASSERT_NE(op->GetInput(1), arg1);
} else {
// The CPU handle should be replaced with a GPU copy
ASSERT_NE(op->GetInput(0), arg0);
ASSERT_EQ(op->GetInput(1), arg1);
}
}
TFE_DeleteOp(matmul);
TFE_DeleteTensorHandle(retvals[0]);
TFE_DeleteTensorHandle(hgpu);
@ -1578,4 +1589,52 @@ TEST(CAPI, TestTFE_OpGetAttrs) {
TFE_DeleteContext(ctx);
}
TEST(CAPI, TestTFE_OpAttrsSerialize) {
TF_Status* status = TF_NewStatus();
TFE_ContextOptions* opts = TFE_NewContextOptions();
TFE_Context* ctx = TFE_NewContext(opts, status);
CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
TFE_DeleteContextOptions(opts);
TFE_Op* var_op = TFE_NewOp(ctx, "VarHandleOp", status);
CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
TFE_OpSetAttrType(var_op, "dtype", TF_INT64);
TFE_OpSetAttrShape(var_op, "shape", {}, 0, status);
TFE_OpAttrs attributes;
TFE_OpGetAttrs(var_op, &attributes);
TF_Buffer* serialized_attr_values = TF_NewBuffer();
TFE_OpAttrsSerialize(&attributes, serialized_attr_values, status);
CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
tensorflow::NameAttrList name_and_attrs;
ASSERT_TRUE(name_and_attrs.ParseFromArray(serialized_attr_values->data,
serialized_attr_values->length));
ASSERT_EQ("VarHandleOp", name_and_attrs.name());
ASSERT_EQ(tensorflow::DT_INT64,
name_and_attrs.attr().find("dtype")->second.type());
TF_DeleteBuffer(serialized_attr_values);
TFE_Op* second_var_op = TFE_NewOp(ctx, "VarHandleOp", status);
string serialized_dtype;
ASSERT_TRUE(name_and_attrs.attr().find("dtype")->second.SerializeToString(
&serialized_dtype));
TFE_OpSetAttrValueProto(
second_var_op, "dtype",
reinterpret_cast<const void*>(serialized_dtype.c_str()),
serialized_dtype.length(), status);
CHECK_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
tensorflow::AttrValueMap attr_values;
auto op = tensorflow::down_cast<tensorflow::OperationInterface*>(
second_var_op->operation.get());
op->Attrs().FillAttrValueMap(&attr_values);
EXPECT_EQ(tensorflow::DT_INT64, attr_values.find("dtype")->second.type());
TF_DeleteStatus(status);
TFE_DeleteOp(var_op);
TFE_DeleteOp(second_var_op);
TFE_DeleteContext(ctx);
}
} // namespace

View File

@ -68,6 +68,7 @@ tf_cc_test(
"//tensorflow/core:test",
"//tensorflow/core:test_main",
"//tensorflow/core:testlib",
"//tensorflow/core/platform:resource_loader",
],
)

View File

@ -21,15 +21,22 @@ limitations under the License.
#include "tensorflow/core/lib/core/status_test_util.h"
#include "tensorflow/core/lib/io/path.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/platform/path.h"
#include "tensorflow/core/platform/resource_loader.h"
#include "tensorflow/core/platform/test.h"
namespace tensorflow {
namespace {
constexpr char kTestDataPbTxt[] =
"cc/saved_model/testdata/half_plus_two_pbtxt/00000123";
constexpr char kTestDataSharded[] =
"cc/saved_model/testdata/half_plus_two/00000123";
string TestDataPbTxt() {
return io::JoinPath("tensorflow", "cc", "saved_model", "testdata",
"half_plus_two_pbtxt", "00000123");
}
string TestDataSharded() {
return io::JoinPath("tensorflow", "cc", "saved_model", "testdata",
"half_plus_two", "00000123");
}
class ReaderTest : public ::testing::Test {
protected:
@ -49,8 +56,7 @@ class ReaderTest : public ::testing::Test {
TEST_F(ReaderTest, TagMatch) {
MetaGraphDef meta_graph_def;
const string export_dir =
io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataSharded);
const string export_dir = GetDataDependencyFilepath(TestDataSharded());
TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(export_dir, {kSavedModelTagServe},
&meta_graph_def));
CheckMetaGraphDef(meta_graph_def);
@ -59,8 +65,7 @@ TEST_F(ReaderTest, TagMatch) {
TEST_F(ReaderTest, NoTagMatch) {
MetaGraphDef meta_graph_def;
const string export_dir =
io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataSharded);
const string export_dir = GetDataDependencyFilepath(TestDataSharded());
Status st = ReadMetaGraphDefFromSavedModel(export_dir, {"missing-tag"},
&meta_graph_def);
EXPECT_FALSE(st.ok());
@ -73,8 +78,7 @@ TEST_F(ReaderTest, NoTagMatch) {
TEST_F(ReaderTest, NoTagMatchMultiple) {
MetaGraphDef meta_graph_def;
const string export_dir =
io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataSharded);
const string export_dir = GetDataDependencyFilepath(TestDataSharded());
Status st = ReadMetaGraphDefFromSavedModel(
export_dir, {kSavedModelTagServe, "missing-tag"}, &meta_graph_def);
EXPECT_FALSE(st.ok());
@ -87,8 +91,7 @@ TEST_F(ReaderTest, NoTagMatchMultiple) {
TEST_F(ReaderTest, PbtxtFormat) {
MetaGraphDef meta_graph_def;
const string export_dir =
io::JoinPath(testing::TensorFlowSrcRoot(), kTestDataPbTxt);
const string export_dir = GetDataDependencyFilepath(TestDataPbTxt());
TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(export_dir, {kSavedModelTagServe},
&meta_graph_def));
CheckMetaGraphDef(meta_graph_def);
@ -97,8 +100,7 @@ TEST_F(ReaderTest, PbtxtFormat) {
TEST_F(ReaderTest, InvalidExportPath) {
MetaGraphDef meta_graph_def;
const string export_dir =
io::JoinPath(testing::TensorFlowSrcRoot(), "missing-path");
const string export_dir = GetDataDependencyFilepath("missing-path");
Status st = ReadMetaGraphDefFromSavedModel(export_dir, {kSavedModelTagServe},
&meta_graph_def);
EXPECT_FALSE(st.ok());

View File

@ -0,0 +1,3 @@
# TensorFlow MLIR
These are the docs for: https://www.tensorflow.org/mlir

View File

@ -0,0 +1,26 @@
upper_tabs:
# Tabs left of dropdown menu
- include: /_upper_tabs_left.yaml
- include: /api_docs/_upper_tabs_api.yaml
# Dropdown menu
- name: Resources
path: /resources
is_default: true
menu:
- include: /resources/_menu_toc.yaml
lower_tabs:
# Subsite tabs
other:
- name: Guide
contents:
- title: Overview
path: /mlir/overview
- heading: Dialects
- title: Overview
path: /mlir/dialects
- title: TensorFlow
path: /mlir/tf_ops
- title: TensorFlow Lite
path: /mlir/tfl_ops
- include: /_upper_tabs_right.yaml

View File

@ -0,0 +1,54 @@
book_path: /mlir/_book.yaml
project_path: /mlir/_project.yaml
description: <!--no description-->
landing_page:
custom_css_path: /site-assets/css/style.css
rows:
- heading: MLIR unifies the infrastructure for high-performance ML models in TensorFlow.
items:
- description: >
The <a href="https://mlir.llvm.org/" class="external">MLIR</a> project defines a common
intermediate representation (IR) that unifies the infrastructure required to execute high
performance machine learning models in TensorFlow and similar ML frameworks. This project
will include the application of HPC techniques, along with integration of
search algorithms like reinforcement learning. MLIR aims to reduce the
cost to bring up new hardware, and improve usability for existing
TensorFlow users.
- code_block: |
<pre class = "prettyprint">
// Syntactically similar to LLVM:
func @testFunction(%arg0: i32) {
%x = call @thingToCall(%arg0) : (i32) -> i32
br ^bb1
^bb1:
%y = addi %x, %x : i32
return %y : i32
}
</pre>
- classname: devsite-landing-row-cards
items:
- heading: "Multi-Level Intermediate Representation for Compiler Infrastructure"
youtube_id: qzljG6DKgic
buttons:
- label: Watch the video
path: https://www.youtube.com/watch?v=qzljG6DKgic
- heading: "A new intermediate representation and compiler framework"
image_path: /resources/images/tf-logo-card-16x9.png
path: https://blog.tensorflow.org/2019/04/mlir-new-intermediate-representation.html
buttons:
- label: Read on TensorFlow blog
path: https://blog.tensorflow.org/2019/04/mlir-new-intermediate-representation.html
- heading: MLIR on GitHub
image_path: /resources/images/github-card-16x9.png
path: https://github.com/llvm/llvm-project/tree/master/mlir
buttons:
- label: View on GitHub
path: https://github.com/llvm/llvm-project/tree/master/mlir
- heading: TensorFlow MLIR on GitHub
image_path: /resources/images/github-card-16x9.png
path: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler/mlir
buttons:
- label: View on GitHub
path: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler/mlir

View File

@ -0,0 +1,37 @@
# MLIR dialects
## Overview
To separate different hardware and software targets, MLIR has “dialects”,
including:
* TensorFlow IR, which represents all things possible in TensorFlow graphs.
* XLA HLO IR, which is designed to take advantage of XLAs compilation
abilities (with output to, among other things, TPUs).
* An experimental affine dialect, which focuses on
[polyhedral representations](https://en.wikipedia.org/wiki/Polytope_model)
and optimizations.
* LLVM IR, which has a 1:1 mapping between it and LLVMs own representation,
allowing MLIR to emit GPU and CPU code through LLVM.
* TensorFlow Lite, which will translate to running code on mobile platforms.
Each dialect consists of a set of defined operations which have invariants
placed on them, like: “This is a binary operator, and the inputs and outputs
have the same types.”
## Adding to MLIR
MLIR has no fixed/built-in list of globally known operations (no “intrinsics”).
Dialects can define entirely custom types, which is how MLIR can model things
like the LLVM IR type system (which has first class aggregates), domain
abstractions important for ML-optimized accelerators like quantized types, and
even the Swift or Clang type systems (which are built around Swift/Clang
declaration nodes) in the future.
If you want to connect a new low-level compiler, you would create a new dialect
and the lowerings between the TensorFlow Graph dialect and your dialect.
This smooths the path for hardware and compiler makers. You can even target
dialects at different levels in the same model; the higher-level optimizers
will respect the unfamiliar parts of the IR and wait for a lower level to handle
it.

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 148 KiB

View File

@ -0,0 +1,36 @@
# MLIR
## Overview
MLIR, or Multi-Level Intermediate Representation, is a representation format
and library of compiler utilities that sits between the model representation
and low-level compilers/executors that generate hardware-specific code.
MLIR is, at its heart, a flexible infrastructure for modern optimizing
compilers. This means it consists of a specification for intermediate
representations (IR) and a code toolkit to perform transformations on that
representation. (In compiler parlance, as you move from higher-level
representations to lower-level representations, these transformations can be
called “lowerings”)
MLIR is highly influenced by [LLVM](https://llvm.org/) and unabashedly reuses
many great ideas from it. It has a flexible type system, and allows
representing, analyzing and transforming graphs combining multiple levels of
abstraction in the same compilation unit. These abstractions include TensorFlow
operations, nested polyhedral loop regions, and even LLVM instructions and fixed
hardware operations and types.
We expect MLIR to be of interest to many groups, including:
* Compiler researchers and implementers looking to optimize performance and
memory consumption of machine learning models
* Hardware makers looking for a way to connect their hardware to TensorFlow,
such as TPUs, portable neural hardware in phones, and other custom ASICs
* People writing language bindings that want to take advantage of optimizing
compilers and hardware acceleration.
The TensorFlow ecosystem contains a number of compilers and optimizers that
operate at multiple levels of the software and hardware stack. We expect the
gradual adoption of MLIR to simplify every aspect of this stack.
<img alt="MLIR overview diagram" src="./images/mlir-infra.svg"/>

View File

@ -602,6 +602,7 @@ tf_cc_binary(
name = "flatbuffer_translate",
deps = [
":flatbuffer_translate_lib",
"@llvm-project//mlir:LoopOpsTransforms",
"@llvm-project//mlir:MlirTranslateMain",
],
)

View File

@ -46,7 +46,7 @@ limitations under the License.
#include "llvm/Support/raw_ostream.h"
#include "mlir/Dialect/QuantOps/QuantOps.h" // TF:llvm-project
#include "mlir/Dialect/QuantOps/QuantTypes.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project
#include "mlir/IR/Diagnostics.h" // TF:llvm-project
@ -76,6 +76,7 @@ limitations under the License.
#include "tensorflow/core/framework/tensor_shape.pb.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/platform/errors.h"
#include "tensorflow/lite/model.h"
#include "tensorflow/lite/schema/schema_generated.h"
@ -124,6 +125,20 @@ static opt<bool, true> experimental_prune_unreachable_nodes_unconditionally_flg(
llvm::cl::location(experimental_prune_unreachable_nodes_unconditionally),
llvm::cl::init(false));
// NOLINTNEXTLINE
static opt<std::string> input_arrays_flag(
"input-arrays",
llvm::cl::desc(
"List of input tensors, if different from the default inputs"),
llvm::cl::init(""));
// NOLINTNEXTLINE
static opt<std::string> output_arrays_flag(
"output-arrays",
llvm::cl::desc(
"List of output tensors, if different from the default outputs"),
llvm::cl::init(""));
namespace {
bool IsScalar(const TensorT& tensor) {
// TODO(b/138222071) We can't distinguish scalars and unranked tensors
@ -590,6 +605,11 @@ StatusOr<Operation*> ConvertOp(
op_state.addTypes({type});
}
if (op_name == "tfl.lstm") {
// TODO(b/147587779): add the right region if region is empty.
op_state.addRegion();
}
llvm::SmallVector<mlir::NamedAttribute, 2> attrs;
if (IsCustomOp(op_name)) {
auto status = mlir::CustomOptionsToAttributes(op_name, op.custom_options,
@ -610,43 +630,30 @@ StatusOr<Operation*> ConvertOp(
return builder.createOperation(op_state);
}
// Returns the output tensor indices for the given subgraph. If
// ordered_output_arrays is provided, then return the tensor indices in
// ordered_output_arrays.
StatusOr<llvm::SmallVector<int32_t, 4>> GetOutputTensorIndices(
const tflite::SubGraphT& subgraph, Location base_loc,
const std::vector<std::string>& ordered_output_arrays) {
if (ordered_output_arrays.empty()) {
return llvm::SmallVector<int32_t, 4>(subgraph.outputs.begin(),
subgraph.outputs.end());
// Returns indices of the given tensors in the subgraph. Returns error if a
// tensor name cannot be found in the subgraph.
StatusOr<std::vector<int>> GetTensorIndices(
const tflite::SubGraphT& subgraph,
const std::vector<std::string>& tensor_names) {
absl::flat_hash_map<std::string, int> name_to_index;
for (auto index_and_tensor : llvm::enumerate(subgraph.tensors)) {
name_to_index[index_and_tensor.value()->name] = index_and_tensor.index();
}
llvm::SmallVector<int32_t, 4> outputs;
outputs.resize(ordered_output_arrays.size());
absl::flat_hash_map<std::string, int> output_order_map;
for (auto output : llvm::enumerate(ordered_output_arrays)) {
output_order_map[output.value()] = output.index();
}
std::vector<int> indices;
indices.reserve(tensor_names.size());
int tensor_index = 0;
int found_output_tensors = 0;
for (const auto& tensor : subgraph.tensors) {
auto found = output_order_map.find(tensor->name);
if (found != output_order_map.end()) {
const int output_index = found->second;
outputs[output_index] = tensor_index;
++found_output_tensors;
for (const auto& name : tensor_names) {
auto found = name_to_index.find(name);
if (found != name_to_index.end()) {
indices.push_back(found->second);
} else {
return errors::InvalidArgument("could not find tensor in subgraph: ",
name);
}
++tensor_index;
}
if (found_output_tensors != ordered_output_arrays.size()) {
auto err = errors::InvalidArgument(
"cannot find all nodes in ordered_output_arrays");
return emitError(base_loc, err.ToString()), err;
}
return outputs;
return indices;
}
// Given a list of tensor indices, returns a string of concatenated tensor names
@ -661,15 +668,18 @@ mlir::NamedAttribute BuildTFEntryFunctionAttribute(
name, builder->getStringAttr(llvm::join(tensor_names, ",")));
}
// Given a list of output indices, traverses the subgraph and returns the set of
// ops that are ancestors of the output tensors.
// Traverses the subgraph from output_indices to input_indices and returns the
// set of ops that are visited.
StatusOr<absl::flat_hash_set<const tflite::OperatorT*>> PruneSubgraph(
const tflite::SubGraphT& subgraph, ArrayRef<int32_t> output_indices) {
const tflite::SubGraphT& subgraph, ArrayRef<int32_t> input_indices,
ArrayRef<int32_t> output_indices) {
// Create a map from tensor index to defining op.
absl::flat_hash_map<int32_t, const tflite::OperatorT*> defining_op;
for (const auto& op : subgraph.operators) {
for (int32_t output : op->outputs) {
defining_op[output] = op.get();
if (!llvm::is_contained(input_indices, output)) {
defining_op[output] = op.get();
}
}
}
@ -718,18 +728,40 @@ StatusOr<FuncOp> ConvertSubgraph(
const std::vector<std::string>& op_names,
const std::vector<std::string>& func_names,
const std::vector<std::unique_ptr<tflite::BufferT>>& buffers,
Location base_loc, Builder builder,
const std::vector<std::string>& ordered_output_arrays, bool is_entry_point,
Location base_loc, Builder builder, bool is_entry_point,
bool use_external_constant,
const std::vector<std::string>& ordered_input_arrays,
const std::vector<std::string>& ordered_output_arrays,
bool experimental_prune_unreachable_nodes_unconditionally) {
llvm::SmallVector<mlir::Type, 2> ret_types;
llvm::SmallVector<mlir::Type, 4> input_types;
auto func_loc = mlir::NameLoc::get(builder.getIdentifier(name), base_loc);
// Construct function type
for (auto input : subgraph.inputs) {
auto& tensor = *subgraph.tensors.at(input);
std::vector<int> func_inputs = subgraph.inputs;
if (is_entry_point && !ordered_input_arrays.empty()) {
if (!experimental_prune_unreachable_nodes_unconditionally) {
// TODO(b/149922113): Resolve input-arrays/pruning flags interaction.
return errors::InvalidArgument(
"input-arrays should be used with experimental pruning flag");
}
TF_ASSIGN_OR_RETURN(func_inputs,
GetTensorIndices(subgraph, ordered_input_arrays));
}
// Add state variables to inputs.
absl::flat_hash_set<int32_t> input_index_set(func_inputs.begin(),
func_inputs.end());
for (int i = 0; i < subgraph.tensors.size(); i++) {
auto& tensor = *subgraph.tensors.at(i);
if (tensor.is_variable && !input_index_set.contains(i)) {
func_inputs.emplace_back(i);
input_index_set.insert(i);
}
}
for (auto input_or_variable : func_inputs) {
auto& tensor = *subgraph.tensors.at(input_or_variable);
// TODO(b/138222071) Graph inputs must have static shape per the exporter,
// but we cannot differentiate scalars from unranked tensors.
// Here we reverse the default assumption that shape = [] means unranked.
@ -753,9 +785,11 @@ StatusOr<FuncOp> ConvertSubgraph(
}
}
TF_ASSIGN_OR_RETURN(
auto func_outputs,
GetOutputTensorIndices(subgraph, base_loc, ordered_output_arrays));
std::vector<int> func_outputs = subgraph.outputs;
if (is_entry_point && !ordered_output_arrays.empty()) {
TF_ASSIGN_OR_RETURN(func_outputs,
GetTensorIndices(subgraph, ordered_output_arrays));
}
for (auto output : func_outputs) {
bool is_constant = !is_op_output[output];
@ -782,8 +816,8 @@ StatusOr<FuncOp> ConvertSubgraph(
Value maybe_optional_arg_marker = nullptr;
// Get or construct MLIR values for each input
for (int i = 0, e = subgraph.inputs.size(); i < e; i++) {
auto input_tensor = subgraph.inputs[i];
for (int i = 0, e = func_inputs.size(); i < e; i++) {
auto input_tensor = func_inputs[i];
const auto& tensor = *subgraph.tensors.at(input_tensor);
auto loc = TensorLoc(tensor, builder, base_loc);
if (vals_map[input_tensor]) {
@ -806,9 +840,9 @@ StatusOr<FuncOp> ConvertSubgraph(
// Set tf.entry_function attribute
if (is_entry_point) {
llvm::SmallVector<mlir::NamedAttribute, 2> attributes;
if (!subgraph.inputs.empty()) {
if (!func_inputs.empty()) {
attributes.push_back(BuildTFEntryFunctionAttribute(
subgraph, &builder, "inputs", subgraph.inputs));
subgraph, &builder, "inputs", func_inputs));
}
if (!func_outputs.empty()) {
attributes.push_back(BuildTFEntryFunctionAttribute(
@ -820,7 +854,7 @@ StatusOr<FuncOp> ConvertSubgraph(
absl::flat_hash_set<const tflite::OperatorT*> pruned_subgraph_ops;
if (experimental_prune_unreachable_nodes_unconditionally) {
TF_ASSIGN_OR_RETURN(pruned_subgraph_ops,
PruneSubgraph(subgraph, func_outputs));
PruneSubgraph(subgraph, func_inputs, func_outputs));
}
// Construct MLIR operators from TFLite operators
@ -931,8 +965,9 @@ std::string SubgraphName(unsigned index, const tflite::SubGraphT& subgraph) {
OwningModuleRef tflite::FlatBufferToMlir(
absl::string_view buffer, MLIRContext* context, Location base_loc,
const std::vector<std::string>& ordered_output_arrays,
bool use_external_constant,
const std::vector<std::string>& ordered_input_arrays,
const std::vector<std::string>& ordered_output_arrays,
bool experimental_prune_unreachable_nodes_unconditionally) {
auto model_ptr =
FlatBufferModel::VerifyAndBuildFromBuffer(buffer.data(), buffer.length());
@ -971,33 +1006,25 @@ OwningModuleRef tflite::FlatBufferToMlir(
builder.getStringAttr(model->description));
}
if (!ordered_output_arrays.empty() && model->subgraphs.size() > 1) {
// TODO(b/141485522): support more than one subgraph.
return emitError(base_loc,
"ordered_output_arrays does not support more than one "
"subgraph yet"),
nullptr;
}
for (auto e : llvm::enumerate(model->subgraphs)) {
auto& subgraph = e.value();
std::string name = SubgraphName(e.index(), *subgraph);
auto func_or_error = ConvertSubgraph(
*subgraph, name, operator_names, func_names, model->buffers, base_loc,
// Only the entry point needs pseudo_input_ops
builder,
// TODO(b/131175224,b/132239787) Support multiple entry points
builder, ordered_output_arrays,
/*is_entry_point=*/e.index() == 0,
/*use_external_constant=*/use_external_constant,
/*use_external_constant=*/use_external_constant, ordered_input_arrays,
ordered_output_arrays,
experimental_prune_unreachable_nodes_unconditionally);
if (!func_or_error.ok()) {
return emitError(base_loc, "could not translate function ")
<< subgraph->name,
<< subgraph->name << ": "
<< func_or_error.status().error_message(),
nullptr;
}
module.push_back(func_or_error.ConsumeValueOrDie());
}
// TFLite subgraphs do not necessarily have names,
return OwningModuleRef(module);
}
@ -1012,17 +1039,24 @@ static OwningModuleRef FlatBufferFileToMlirTrans(
auto loc =
mlir::FileLineColLoc::get(input->getBufferIdentifier(), 0, 0, context);
// Parses output_arrays_order from command line option.
// Parses input/output names from command line options.
std::vector<std::string> inputs;
std::vector<std::string> outputs;
if (!tensorflow::ParseOutputArrayInfo(output_arrays_string, &outputs).ok()) {
// Use output parser since we only have tensor names.
if (!tensorflow::ParseOutputArrayInfo(input_arrays_flag, &inputs).ok()) {
return emitError(loc, "parsing input array info failed ")
<< input_arrays_flag,
nullptr;
}
if (!tensorflow::ParseOutputArrayInfo(output_arrays_flag, &outputs).ok()) {
return emitError(loc, "parsing output array info failed ")
<< output_arrays_string,
<< output_arrays_flag,
nullptr;
}
return tflite::FlatBufferToMlir(
absl::string_view(input->getBufferStart(), input->getBufferSize()),
context, loc, outputs, use_external_constant,
context, loc, use_external_constant, inputs, outputs,
experimental_prune_unreachable_nodes_unconditionally);
}

View File

@ -35,9 +35,9 @@ namespace tflite {
// are not ancestors of the output nodes will be pruned.
mlir::OwningModuleRef FlatBufferToMlir(
absl::string_view buffer, mlir::MLIRContext* context,
mlir::Location base_loc,
const std::vector<std::string>& ordered_output_arrays,
bool use_external_constant = false,
mlir::Location base_loc, bool use_external_constant = false,
const std::vector<std::string>& ordered_input_arrays = {},
const std::vector<std::string>& ordered_output_arrays = {},
bool experimental_prune_unreachable_nodes_unconditionally = false);
} // namespace tflite

View File

@ -42,7 +42,7 @@ limitations under the License.
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/ToolOutputFile.h"
#include "mlir/Dialect/QuantOps/QuantTypes.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project
#include "mlir/IR/Function.h" // TF:llvm-project
#include "mlir/IR/Location.h" // TF:llvm-project
@ -122,8 +122,6 @@ bool emit_custom_ops;
bool emit_select_tf_ops;
bool lower_tensor_list_ops;
bool strip_debug_info;
// NOLINTNEXTLINE
std::string output_arrays_string;
// NOLINTNEXTLINE
static opt<bool, true> emit_builtin_tflite_ops_flag(
@ -156,11 +154,6 @@ static opt<bool, true> strip_debug_info_flag(
"strip-debug-info", llvm::cl::desc("Strip debug info during export"),
llvm::cl::location(strip_debug_info), llvm::cl::init(false));
// NOLINTNEXTLINE
static opt<std::string, true> output_arrays_flag(
"output-arrays", llvm::cl::desc("List of output tensors"),
llvm::cl::location(output_arrays_string), llvm::cl::init(""));
ABSL_CONST_INIT const absl::string_view kFlexOpNamePrefix = "Flex";
// Use initial buffer size in flatbuffer builder to be same as the initial size
@ -172,7 +165,7 @@ constexpr size_t kInitialBufferSize = 10240;
// `isSigned` is set to false for other types.
static StatusOr<tflite::TensorType> GetTFLiteType(Type type,
bool is_signed = true) {
if (!is_signed && type.isInteger(8)) {
if (!is_signed && type.isSignlessInteger(8)) {
return tflite::TensorType_UINT8;
}
if (!is_signed) {

View File

@ -27,7 +27,5 @@ extern bool emit_custom_ops;
extern bool lower_tensor_list_ops;
// The flag to control whether debug info gets stripped on export.
extern bool strip_debug_info;
// The flag to control the output array info of tflite graph.
extern std::string output_arrays_string;
#endif // TENSORFLOW_COMPILER_MLIR_LITE_FLATBUFFER_TRANSLATE_FLAGS_H_

View File

@ -26,7 +26,7 @@ limitations under the License.
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/FormatVariadic.h"
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project
#include "mlir/IR/Matchers.h" // TF:llvm-project
@ -275,7 +275,7 @@ Attribute ConstFoldBinaryOp(
return ConstFoldBinaryOp<FloatAttr>(result_type, operands[0], operands[1],
float_calculate, is_commutative);
if (elemType.isa<IntegerType>())
if (elemType.isSignlessInteger())
return ConstFoldBinaryOp<IntegerAttr>(result_type, operands[0], operands[1],
int_calculate, is_commutative);
@ -723,12 +723,11 @@ static LogicalResult Verify(PackOp op) {
}
// Make sure all inputs have the same shape and element type.
// TODO(rahulsp): Simplify once b/135032064 is fixed.
for (Value operand : op.getOperands()) {
auto other_type = operand.getType().cast<ShapedType>();
if (input_type != other_type)
// TODO(b/135032063): Simplify once fixed.
for (Type operand_type : op.getOperandTypes()) {
if (failed(mlir::verifyCompatibleShape(input_type, operand_type)))
return op.emitOpError("operands should be of the same type. got ")
<< input_type << ", " << other_type;
<< input_type << ", " << operand_type;
}
return success();
@ -1561,7 +1560,7 @@ OpFoldResult RangeOp::fold(ArrayRef<Attribute> operands) {
limit_tensor.getType().getRank() == 0 &&
delta_tensor.getType().getRank() == 0);
Type elem_type = getType().cast<ShapedType>().getElementType();
if (elem_type.isa<IntegerType>()) {
if (elem_type.isSignlessInteger()) {
auto start_attr = start_tensor.getValue<IntegerAttr>({});
auto limit_attr = limit_tensor.getValue<IntegerAttr>({});
auto delta_attr = delta_tensor.getValue<IntegerAttr>({});
@ -1663,7 +1662,7 @@ OpFoldResult TransposeOp::fold(ArrayRef<Attribute> operands) {
// Do not try to fold elements attr of a quant type because
// DenseElementsAttr does not support it.
if (!getType().cast<ShapedType>().getElementType().isIntOrFloat())
if (!getType().cast<ShapedType>().getElementType().isSignlessIntOrFloat())
return nullptr;
assert(perm_tensor.getType().getRank() == 1);

View File

@ -1656,7 +1656,7 @@ def TFL_MaximumOp : TFL_Op<"maximum", [
let hasOptions = 0;
}
def TFL_MeanOp : TFL_Op<"mean", [NoSideEffect, SameOperandsAndResultsScale]> {
def TFL_MeanOp : TFL_Op<"mean", [NoSideEffect]> {
let summary = "Mean operator";
let description = [{
@ -2482,11 +2482,11 @@ def TFL_TileOp: TFL_Op<"tile", [NoSideEffect, SameOperandsAndResultsScale,
}];
let arguments = (ins
TFL_TensorOf<[F32, I1, I32, I64, TFL_Uint8, QUI8]>:$input,
TFL_TensorOf<[F32, I1, I32, I64, TFL_Uint8, QUI8, TFL_Str]>:$input,
TFL_I32OrI64Tensor:$multiples);
let results = (outs
TFL_TensorOf<[F32, I1, I32, I64, TFL_Uint8, QUI8]>:$output);
TFL_TensorOf<[F32, I1, I32, I64, TFL_Uint8, QUI8, TFL_Str]>:$output);
let hasOptions = 0;
}

View File

@ -63,6 +63,41 @@ const char kDetectionPostProcessOp[] =
"'detections_per_class' type: 'int' default_value { i : 100 }} attr { "
"name: 'use_regular_nms' type: 'bool' default_value { b : false }}";
const char kUnidirectionalSequenceLstmOp[] =
"name: 'UnidirectionalSequenceLstm' input_arg: {name: 'Input' type: "
"DT_FLOAT} input_arg: { name: 'InputToInputWeights' type: DT_FLOAT } "
"input_arg: { name: 'InputToForgetWeights' type: DT_FLOAT } input_arg: { "
"name: 'InputToCellWeights' type: DT_FLOAT} input_arg: { name: "
"'InputToOutputWeights' type: DT_FLOAT } input_arg: { name: "
"'RecurrentToInputWeights' type: DT_FLOAT} input_arg: { name: "
"'RecurrentToForgetWeights' type: DT_FLOAT} input_arg: { name: "
"'RecurrentToCellWeights' type: DT_FLOAT } input_arg: { name: "
"'RecurrentToOutputWeights' type: DT_FLOAT } input_arg: { name: "
"'CellToInputWeights' type: DT_FLOAT} input_arg: { name: "
"'CellToForgetWeights' type: DT_FLOAT } input_arg: { name: "
"'CellToOutputWeights' type: DT_FLOAT } input_arg: { name: 'InputGateBias' "
"type: DT_FLOAT } input_arg: { name: 'ForgetGateBias' type: DT_FLOAT } "
"input_arg: { name: 'kCellGateBias' type: DT_FLOAT } input_arg: { name: "
"'OutputGateBias' type: DT_FLOAT } input_arg: { name: 'ProjectionWeights' "
"type: DT_FLOAT } input_arg: { name: 'ProjectionBias' type: DT_FLOAT } "
"input_arg: { name: 'InputActivationState' type: DT_FLOAT} input_arg: { "
"name: 'InputCellStateTensor' type: DT_FLOAT } "
"output_arg: { name: 'Concat' type: DT_FLOAT} "
"output_arg: { name: "
"'LastState' type: DT_FLOAT } output_arg: { name: 'Output' type: DT_FLOAT} "
"attr : { name: '_tflite_input_indices' type: 'list(int)'}";
const char kUnidirectionalSequenceRnnOp[] =
"name: 'UnidirectionalSequenceRnn' input_arg: {name: 'Input' type: "
"DT_FLOAT} input_arg: { name: 'Weights' type: DT_FLOAT } "
"input_arg: { name: 'RecurrentWeights' type: DT_FLOAT } input_arg: { "
"name: 'Bias' type: DT_FLOAT} "
"input_arg: { name: 'HiddenState' type: DT_FLOAT} "
"output_arg: { name: "
"'LastState' type: DT_FLOAT } output_arg: { name: 'Output' type: "
"DT_FLOAT} "
"attr : { name: '_tflite_input_indices' type: 'list(int)'}";
// Converts the toco::IODataType to tensorflow::DataType. Only contains the
// conversion mapping for constants defined in TFLite Python API.
DataType ConvertIODataTypeToDataType(toco::IODataType dtype) {
@ -260,6 +295,8 @@ Status ConvertGraphDefToTFLiteFlatBuffer(const toco::ModelFlags& model_flags,
std::vector<string> extra_tf_opdefs(toco_flags.custom_opdefs().begin(),
toco_flags.custom_opdefs().end());
extra_tf_opdefs.push_back(kDetectionPostProcessOp);
extra_tf_opdefs.push_back(kUnidirectionalSequenceLstmOp);
extra_tf_opdefs.push_back(kUnidirectionalSequenceRnnOp);
TF_RETURN_IF_ERROR(RegisterCustomBuiltinOps(extra_tf_opdefs));
TF_ASSIGN_OR_RETURN(

View File

@ -25,7 +25,7 @@ limitations under the License.
#include "llvm/Support/raw_ostream.h"
#include "mlir/Dialect/QuantOps/FakeQuantSupport.h" // TF:llvm-project
#include "mlir/Dialect/QuantOps/QuantOps.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/AffineExpr.h" // TF:llvm-project
#include "mlir/IR/AffineMap.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project

View File

@ -61,11 +61,9 @@ TfLiteStatus QuantizeModel(
std::string serialized_model(
reinterpret_cast<const char*>(input_builder.GetBufferPointer()),
input_builder.GetSize());
std::vector<std::string> output_arrays_order;
OwningModuleRef module =
tflite::FlatBufferToMlir(serialized_model, &context,
UnknownLoc::get(&context), output_arrays_order);
OwningModuleRef module = tflite::FlatBufferToMlir(serialized_model, &context,
UnknownLoc::get(&context));
if (!module) {
error_reporter->Report("Couldn't import flatbuffer to MLIR.");
return kTfLiteError;

View File

@ -26,7 +26,7 @@ limitations under the License.
#include "llvm/Support/raw_ostream.h"
#include "mlir/Dialect/QuantOps/QuantOps.h" // TF:llvm-project
#include "mlir/Dialect/QuantOps/QuantTypes.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project
#include "mlir/IR/Function.h" // TF:llvm-project

View File

@ -26,7 +26,7 @@ limitations under the License.
#include "mlir/Dialect/QuantOps/FakeQuantSupport.h" // TF:llvm-project
#include "mlir/Dialect/QuantOps/QuantOps.h" // TF:llvm-project
#include "mlir/Dialect/QuantOps/QuantTypes.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/BlockAndValueMapping.h" // TF:llvm-project
#include "mlir/IR/Function.h" // TF:llvm-project
@ -191,7 +191,7 @@ struct QuantizationPattern : public RewritePattern {
auto ele_type = operand.getType().cast<TensorType>().getElementType();
if (auto op_inst = dyn_cast_or_null<DQ>(operand.getDefiningOp())) {
inputs.push_back(op_inst.input());
} else if (ele_type.isa<IntegerType>()) {
} else if (ele_type.isSignlessInteger()) {
// If the operand is an integer tensor, then it doesn't require the
// DQ op in the pattern.
inputs.push_back(operand);
@ -225,7 +225,7 @@ struct QuantizationPattern : public RewritePattern {
auto user = llvm::cast<Q>(*result.user_begin());
outputs_replaced.insert({user.output(), enumerated_result.index()});
output_types.push_back(user.getType());
} else if (result_ele_type.template isa<IntegerType>()) {
} else if (result_ele_type.isSignlessInteger()) {
// If the result is an integer tensor, then it doesn't require the
// D op in the pattern.
outputs_replaced.insert({result, enumerated_result.index()});

View File

@ -26,7 +26,7 @@ limitations under the License.
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "mlir/Dialect/QuantOps/QuantOps.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/MLIRContext.h" // TF:llvm-project
#include "mlir/IR/PatternMatch.h" // TF:llvm-project

View File

@ -48,11 +48,9 @@ TfLiteStatus SparsifyModel(const tflite::ModelT& input_model,
std::string serialized_model(
reinterpret_cast<const char*>(input_builder.GetBufferPointer()),
input_builder.GetSize());
std::vector<std::string> output_arrays_order;
OwningModuleRef module =
tflite::FlatBufferToMlir(serialized_model, &context,
UnknownLoc::get(&context), output_arrays_order);
OwningModuleRef module = tflite::FlatBufferToMlir(serialized_model, &context,
UnknownLoc::get(&context));
if (!module) {
error_reporter->Report("Couldn't import flatbuffer to MLIR.");
return kTfLiteError;

View File

@ -27,6 +27,20 @@ func @testDilatedConvWithNonZeroSTBPadding(%arg0: tensor<1x128x128x3xf32>, %arg1
// CHECK-NEXT: return [[RESULT]] : tensor<1x128x128x8xf32>
}
func @testDilatedConvWithNonTrivialDilations(%arg0: tensor<1x128x128x3xf32>, %arg1: tensor<2x2xi32>, %arg2: tensor<5x5x3x8xf32>) -> tensor<1x128x128x8xf32> {
%cst = constant dense<[2, 2]> : tensor<2xi32>
%0 = "tf.SpaceToBatchND"(%arg0, %cst, %arg1) : (tensor<1x128x128x3xf32>, tensor<2xi32>, tensor<2x2xi32>) -> tensor<4x68x68x3xf32>
%1 = "tf.Conv2D"(%0, %arg2) {padding = "VALID", dilations = [1, 2, 2, 1], strides = [1, 1, 1, 1]} : (tensor<4x68x68x3xf32>, tensor<5x5x3x8xf32>) -> tensor<4x64x64x8xf32>
%2 = "tf.BatchToSpaceND"(%1, %cst, %arg1) : (tensor<4x64x64x8xf32>, tensor<2xi32>, tensor<2x2xi32>) -> tensor<1x128x128x8xf32>
return %2 : tensor<1x128x128x8xf32>
// CHECK-LABEL: testDilatedConvWithNonTrivialDilations
// CHECK: [[STB:%.*]] = "tf.SpaceToBatchND"
// CHECK-NEXT: [[CONV:%.*]] = "tf.Conv2D"
// CHECK-NEXT: [[RESULT:%.*]] = "tf.BatchToSpaceND"
// CHECK-NEXT: return [[RESULT]]
}
func @testDilatedDepthWiseConv(%arg0: tensor<1x128x128x3xf32>, %arg1: tensor<2x2xi32>, %arg2: tensor<5x5x3x8xf32>) -> tensor<1x128x128x8xf32> {
%cst = constant dense<[2, 2]> : tensor<2xi32>
%0 = "tf.SpaceToBatchND"(%arg0, %cst, %arg1) : (tensor<1x128x128x3xf32>, tensor<2xi32>, tensor<2x2xi32>) -> tensor<4x68x68x3xf32>
@ -104,7 +118,7 @@ func @testDilatedDepthWiseConvWithBiasAdd(%arg0: tensor<1x128x128x3xf32>, %arg1:
func @testDilatedConvWithExpandSqueeze1(%arg0: tensor<1x128x128xf32>, %arg1: tensor<2x2xi32>, %arg2: tensor<5x5x1x1xf32>, %arg3: tensor<128xf32>) -> tensor<1x128x128xf32> {
%cst = constant dense<[2, 2]> : tensor<2xi32>
%cst_0 = constant dense<3> : tensor<i32>
%cst_0 = "tf.Const"() { value = dense<3> : tensor<i32> } : () -> tensor<i32>
%0 = "tf.SpaceToBatchND"(%arg0, %cst, %arg1) : (tensor<1x128x128xf32>, tensor<2xi32>, tensor<2x2xi32>) -> tensor<4x68x68xf32>
%1 = "tf.ExpandDims"(%0, %cst_0) : (tensor<4x68x68xf32>, tensor<i32>) -> tensor<4x68x68x1xf32>
%2 = "tf.Conv2D"(%1, %arg2) {padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<4x68x68x1xf32>, tensor<5x5x1x1xf32>) -> tensor<4x64x64x1xf32>
@ -115,7 +129,7 @@ func @testDilatedConvWithExpandSqueeze1(%arg0: tensor<1x128x128xf32>, %arg1: ten
// CHECK-LABEL: testDilatedConvWithExpandSqueeze1
// CHECK-SAME: ([[INPUT:%.*]]: tensor<1x128x128xf32>, [[PADDING:%.*]]: tensor<2x2xi32>, [[FILTER:%.*]]: tensor<5x5x1x1xf32>, [[BIAS:%.*]]: tensor<128xf32>)
// CHECK-NEXT: [[AXIS:%.*]] = constant dense<3> : tensor<i32>
// CHECK-NEXT: [[AXIS:%.*]] = "tf.Const"() {value = dense<3> : tensor<i32>} : () -> tensor<i32>
// CHECK-NEXT: [[EXPAND:%.*]] = "tf.ExpandDims"([[INPUT]], [[AXIS]]) : (tensor<1x128x128xf32>, tensor<i32>) -> tensor<1x128x128x1xf32>
// CHECK-NEXT: [[CONV:%.*]] = "tf.Conv2D"([[EXPAND]], [[FILTER]]) {dilations = [1, 2, 2, 1], padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<1x128x128x1xf32>, tensor<5x5x1x1xf32>) -> tensor<1x128x128x1xf32>
// CHECK-NEXT: [[SQUEEZE:%.*]] = "tf.Squeeze"([[CONV]]) {squeeze_dims = [3]} : (tensor<1x128x128x1xf32>) -> tensor<1x128x128xf32>
@ -125,7 +139,7 @@ func @testDilatedConvWithExpandSqueeze1(%arg0: tensor<1x128x128xf32>, %arg1: ten
func @testDilatedDepthWiseConvWithExpandSqueeze1(%arg0: tensor<1x128x128xf32>, %arg1: tensor<2x2xi32>, %arg2: tensor<5x5x1x1xf32>, %arg3: tensor<128xf32>) -> tensor<1x128x128xf32> {
%cst = constant dense<[2, 2]> : tensor<2xi32>
%cst_0 = constant dense<3> : tensor<i32>
%cst_0 = "tf.Const"() { value = dense<3> : tensor<i32> } : () -> tensor<i32>
%0 = "tf.SpaceToBatchND"(%arg0, %cst, %arg1) : (tensor<1x128x128xf32>, tensor<2xi32>, tensor<2x2xi32>) -> tensor<4x68x68xf32>
%1 = "tf.ExpandDims"(%0, %cst_0) : (tensor<4x68x68xf32>, tensor<i32>) -> tensor<4x68x68x1xf32>
%2 = "tf.DepthwiseConv2dNative"(%1, %arg2) {padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<4x68x68x1xf32>, tensor<5x5x1x1xf32>) -> tensor<4x64x64x1xf32>
@ -136,7 +150,7 @@ func @testDilatedDepthWiseConvWithExpandSqueeze1(%arg0: tensor<1x128x128xf32>, %
// CHECK-LABEL: testDilatedDepthWiseConvWithExpandSqueeze1
// CHECK-SAME: ([[INPUT:%.*]]: tensor<1x128x128xf32>, [[PADDING:%.*]]: tensor<2x2xi32>, [[FILTER:%.*]]: tensor<5x5x1x1xf32>, [[BIAS:%.*]]: tensor<128xf32>)
// CHECK-NEXT: [[AXIS:%.*]] = constant dense<3> : tensor<i32>
// CHECK-NEXT: [[AXIS:%.*]] = "tf.Const"() {value = dense<3> : tensor<i32>} : () -> tensor<i32>
// CHECK-NEXT: [[EXPAND:%.*]] = "tf.ExpandDims"([[INPUT]], [[AXIS]]) : (tensor<1x128x128xf32>, tensor<i32>) -> tensor<1x128x128x1xf32>
// CHECK-NEXT: [[CONV:%.*]] = "tf.DepthwiseConv2dNative"([[EXPAND]], [[FILTER]]) {dilations = [1, 2, 2, 1], padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<1x128x128x1xf32>, tensor<5x5x1x1xf32>) -> tensor<1x128x128x1xf32>
// CHECK-NEXT: [[SQUEEZE:%.*]] = "tf.Squeeze"([[CONV]]) {squeeze_dims = [3]} : (tensor<1x128x128x1xf32>) -> tensor<1x128x128xf32>
@ -146,7 +160,7 @@ func @testDilatedDepthWiseConvWithExpandSqueeze1(%arg0: tensor<1x128x128xf32>, %
func @testDilatedConvWithExpandSqueeze2(%arg0: tensor<1x128x128xf32>, %arg1: tensor<2x2xi32>, %arg2: tensor<5x5x1x1xf32>, %arg3: tensor<?xf32>) -> tensor<1x128x128xf32> {
%cst = constant dense<[2, 2]> : tensor<2xi32>
%cst_0 = constant dense<3> : tensor<i32>
%cst_0 = "tf.Const"() { value = dense<3> : tensor<i32> } : () -> tensor<i32>
%0 = "tf.SpaceToBatchND"(%arg0, %cst, %arg1) : (tensor<1x128x128xf32>, tensor<2xi32>, tensor<2x2xi32>) -> tensor<4x?x?xf32>
%1 = "tf.ExpandDims"(%0, %cst_0) : (tensor<4x?x?xf32>, tensor<i32>) -> tensor<4x?x?x1xf32>
%2 = "tf.Conv2D"(%1, %arg2) {padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<4x?x?x1xf32>, tensor<5x5x1x1xf32>) -> tensor<4x?x?x1xf32>
@ -157,7 +171,7 @@ func @testDilatedConvWithExpandSqueeze2(%arg0: tensor<1x128x128xf32>, %arg1: ten
// CHECK-LABEL: testDilatedConvWithExpandSqueeze2
// CHECK-SAME: ([[INPUT:%.*]]: tensor<1x128x128xf32>, [[PADDING:%.*]]: tensor<2x2xi32>, [[FILTER:%.*]]: tensor<5x5x1x1xf32>, [[BIAS:%.*]]: tensor<?xf32>)
// CHECK-NEXT: [[AXIS:%.*]] = constant dense<3> : tensor<i32>
// CHECK-NEXT: [[AXIS:%.*]] = "tf.Const"() {value = dense<3> : tensor<i32>} : () -> tensor<i32>
// CHECK-NEXT: [[EXPAND:%.*]] = "tf.ExpandDims"([[INPUT]], [[AXIS]]) : (tensor<1x128x128xf32>, tensor<i32>) -> tensor<1x128x128x1xf32>
// CHECK-NEXT: [[CONV:%.*]] = "tf.Conv2D"([[EXPAND]], [[FILTER]]) {dilations = [1, 2, 2, 1], padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<1x128x128x1xf32>, tensor<5x5x1x1xf32>) -> tensor<1x128x128x1xf32>
// CHECK-NEXT: [[SQUEEZE:%.*]] = "tf.Squeeze"([[CONV]]) {squeeze_dims = [3]} : (tensor<1x128x128x1xf32>) -> tensor<1x128x128xf32>
@ -167,7 +181,7 @@ func @testDilatedConvWithExpandSqueeze2(%arg0: tensor<1x128x128xf32>, %arg1: ten
func @testDilatedDepthWiseConvWithExpandSqueeze2(%arg0: tensor<1x128x128xf32>, %arg1: tensor<2x2xi32>, %arg2: tensor<5x5x1x1xf32>, %arg3: tensor<?xf32>) -> tensor<1x128x128xf32> {
%cst = constant dense<[2, 2]> : tensor<2xi32>
%cst_0 = constant dense<3> : tensor<i32>
%cst_0 = "tf.Const"() { value = dense<3> : tensor<i32> } : () -> tensor<i32>
%0 = "tf.SpaceToBatchND"(%arg0, %cst, %arg1) : (tensor<1x128x128xf32>, tensor<2xi32>, tensor<2x2xi32>) -> tensor<4x?x?xf32>
%1 = "tf.ExpandDims"(%0, %cst_0) : (tensor<4x?x?xf32>, tensor<i32>) -> tensor<4x?x?x1xf32>
%2 = "tf.DepthwiseConv2dNative"(%1, %arg2) {padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<4x?x?x1xf32>, tensor<5x5x1x1xf32>) -> tensor<4x?x?x1xf32>
@ -178,7 +192,7 @@ func @testDilatedDepthWiseConvWithExpandSqueeze2(%arg0: tensor<1x128x128xf32>, %
// CHECK-LABEL: testDilatedDepthWiseConvWithExpandSqueeze2
// CHECK-SAME: ([[INPUT:%.*]]: tensor<1x128x128xf32>, [[PADDING:%.*]]: tensor<2x2xi32>, [[FILTER:%.*]]: tensor<5x5x1x1xf32>, [[BIAS:%.*]]: tensor<?xf32>)
// CHECK-NEXT: [[AXIS:%.*]] = constant dense<3> : tensor<i32>
// CHECK-NEXT: [[AXIS:%.*]] = "tf.Const"() {value = dense<3> : tensor<i32>} : () -> tensor<i32>
// CHECK-NEXT: [[EXPAND:%.*]] = "tf.ExpandDims"([[INPUT]], [[AXIS]]) : (tensor<1x128x128xf32>, tensor<i32>) -> tensor<1x128x128x1xf32>
// CHECK-NEXT: [[CONV:%.*]] = "tf.DepthwiseConv2dNative"([[EXPAND]], [[FILTER]]) {dilations = [1, 2, 2, 1], padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<1x128x128x1xf32>, tensor<5x5x1x1xf32>) -> tensor<1x128x128x1xf32>
// CHECK-NEXT: [[SQUEEZE:%.*]] = "tf.Squeeze"([[CONV]]) {squeeze_dims = [3]} : (tensor<1x128x128x1xf32>) -> tensor<1x128x128xf32>
@ -188,7 +202,7 @@ func @testDilatedDepthWiseConvWithExpandSqueeze2(%arg0: tensor<1x128x128xf32>, %
func @testDilatedConvWithExpandSqueeze3(%arg0: tensor<1x128x128xf32>, %arg1: tensor<2x2xi32>, %arg2: tensor<5x5x1x1xf32>, %arg3: tensor<128xf32>) -> tensor<1x128x128xf32> {
%cst = constant dense<[2, 2]> : tensor<2xi32>
%cst_0 = constant dense<3> : tensor<i32>
%cst_0 = "tf.Const"() { value = dense<3> : tensor<i32> } : () -> tensor<i32>
%0 = "tf.SpaceToBatchND"(%arg0, %cst, %arg1) : (tensor<1x128x128xf32>, tensor<2xi32>, tensor<2x2xi32>) -> tensor<4x68x68xf32>
%1 = "tf.ExpandDims"(%0, %cst_0) : (tensor<4x68x68xf32>, tensor<i32>) -> tensor<4x68x68x1xf32>
%2 = "tf.Conv2D"(%1, %arg2) {padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<4x68x68x1xf32>, tensor<5x5x1x1xf32>) -> tensor<4x64x64x1xf32>
@ -200,7 +214,7 @@ func @testDilatedConvWithExpandSqueeze3(%arg0: tensor<1x128x128xf32>, %arg1: ten
// CHECK-LABEL: testDilatedConvWithExpandSqueeze3
// CHECK-SAME: ([[INPUT:%.*]]: tensor<1x128x128xf32>, [[PADDING:%.*]]: tensor<2x2xi32>, [[FILTER:%.*]]: tensor<5x5x1x1xf32>, [[BIAS:%.*]]: tensor<128xf32>)
// CHECK-NEXT: [[AXIS:%.*]] = constant dense<3> : tensor<i32>
// CHECK-NEXT: [[AXIS:%.*]] = "tf.Const"() {value = dense<3> : tensor<i32>} : () -> tensor<i32>
// CHECK-NEXT: [[EXPAND:%.*]] = "tf.ExpandDims"([[INPUT]], [[AXIS]]) : (tensor<1x128x128xf32>, tensor<i32>) -> tensor<1x128x128x1xf32>
// CHECK-NEXT: [[CONV:%.*]] = "tf.Conv2D"([[EXPAND]], [[FILTER]]) {dilations = [1, 2, 2, 1], padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<1x128x128x1xf32>, tensor<5x5x1x1xf32>) -> tensor<1x128x128x1xf32>
// CHECK-NEXT: [[SQUEEZE:%.*]] = "tf.Squeeze"([[CONV]]) {squeeze_dims = [3]} : (tensor<1x128x128x1xf32>) -> tensor<1x128x128xf32>
@ -210,7 +224,7 @@ func @testDilatedConvWithExpandSqueeze3(%arg0: tensor<1x128x128xf32>, %arg1: ten
func @testDilatedDepthWiseConvWithExpandSqueeze3(%arg0: tensor<1x128x128xf32>, %arg1: tensor<2x2xi32>, %arg2: tensor<5x5x1x1xf32>, %arg3: tensor<128xf32>) -> tensor<1x128x128xf32> {
%cst = constant dense<[2, 2]> : tensor<2xi32>
%cst_0 = constant dense<3> : tensor<i32>
%cst_0 = "tf.Const"() { value = dense<3> : tensor<i32> } : () -> tensor<i32>
%0 = "tf.SpaceToBatchND"(%arg0, %cst, %arg1) : (tensor<1x128x128xf32>, tensor<2xi32>, tensor<2x2xi32>) -> tensor<4x68x68xf32>
%1 = "tf.ExpandDims"(%0, %cst_0) : (tensor<4x68x68xf32>, tensor<i32>) -> tensor<4x68x68x1xf32>
%2 = "tf.DepthwiseConv2dNative"(%1, %arg2) {padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<4x68x68x1xf32>, tensor<5x5x1x1xf32>) -> tensor<4x64x64x1xf32>
@ -222,10 +236,29 @@ func @testDilatedDepthWiseConvWithExpandSqueeze3(%arg0: tensor<1x128x128xf32>, %
// CHECK-LABEL: testDilatedDepthWiseConvWithExpandSqueeze3
// CHECK-SAME: ([[INPUT:%.*]]: tensor<1x128x128xf32>, [[PADDING:%.*]]: tensor<2x2xi32>, [[FILTER:%.*]]: tensor<5x5x1x1xf32>, [[BIAS:%.*]]: tensor<128xf32>)
// CHECK-NEXT: [[AXIS:%.*]] = constant dense<3> : tensor<i32>
// CHECK-NEXT: [[AXIS:%.*]] = "tf.Const"() {value = dense<3> : tensor<i32>} : () -> tensor<i32>
// CHECK-NEXT: [[EXPAND:%.*]] = "tf.ExpandDims"([[INPUT]], [[AXIS]]) : (tensor<1x128x128xf32>, tensor<i32>) -> tensor<1x128x128x1xf32>
// CHECK-NEXT: [[CONV:%.*]] = "tf.DepthwiseConv2dNative"([[EXPAND]], [[FILTER]]) {dilations = [1, 2, 2, 1], padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<1x128x128x1xf32>, tensor<5x5x1x1xf32>) -> tensor<1x128x128x1xf32>
// CHECK-NEXT: [[SQUEEZE:%.*]] = "tf.Squeeze"([[CONV]]) {squeeze_dims = [3]} : (tensor<1x128x128x1xf32>) -> tensor<1x128x128xf32>
// CHECK-NEXT: [[RESULT:%.*]] = "tf.BiasAdd"([[SQUEEZE]], [[BIAS]]) : (tensor<1x128x128xf32>, tensor<128xf32>) -> tensor<1x128x128xf32>
// CHECK-NEXT: return [[RESULT]] : tensor<1x128x128xf32>
}
func @testDilatedConvWithDifferentExpandSqueezeAxis(%arg0: tensor<1x128x128xf32>, %arg1: tensor<2x2xi32>, %arg2: tensor<5x5x1x1xf32>, %arg3: tensor<128xf32>) -> tensor<1x128x128x1xf32> {
%cst = constant dense<[2, 2]> : tensor<2xi32>
%cst_0 = "tf.Const"() { value = dense<3> : tensor<i32> } : () -> tensor<i32>
%0 = "tf.SpaceToBatchND"(%arg0, %cst, %arg1) : (tensor<1x128x128xf32>, tensor<2xi32>, tensor<2x2xi32>) -> tensor<4x68x68xf32>
%1 = "tf.ExpandDims"(%0, %cst_0) : (tensor<4x68x68xf32>, tensor<i32>) -> tensor<4x68x68x1xf32>
%2 = "tf.Conv2D"(%1, %arg2) {padding = "VALID", strides = [1, 1, 1, 1]} : (tensor<4x68x68x1xf32>, tensor<5x5x1x1xf32>) -> tensor<4x64x64x1xf32>
%3 = "tf.Squeeze"(%2) {squeeze_dims = [2]} : (tensor<4x64x64x1xf32>) -> tensor<4x64x64x1xf32>
%4 = "tf.BatchToSpaceND"(%3, %cst, %arg1) : (tensor<4x64x64x1xf32>, tensor<2xi32>, tensor<2x2xi32>) -> tensor<1x128x128x1xf32>
return %4 : tensor<1x128x128x1xf32>
// CHECK-LABEL: testDilatedConvWithDifferentExpandSqueezeAxis
// CHECK: [[STB:%.*]] = "tf.SpaceToBatchND"
// CHECK-NEXT: [[EXPAND:%.*]] = "tf.ExpandDims"
// CHECK-NEXT: [[CONV:%.*]] = "tf.Conv2D"
// CHECK-NEXT: [[SQUEEZE:%.*]] = "tf.Squeeze"
// CHECK-NEXT: [[RESULT:%.*]] = "tf.BatchToSpaceND"
// CHECK-NEXT: return [[RESULT]]
}

View File

@ -0,0 +1,13 @@
// RUN: flatbuffer_translate -mlir-to-tflite-flatbuffer %s -o - | flatbuffer_translate -input-arrays=squared_difference --experimental-prune-unreachable-nodes-unconditionally --tflite-flatbuffer-to-mlir - -o - | FileCheck --dump-input-on-failure %s
// Tests -input-arrays flag.
func @main(%arg0: tensor<4xf32>) -> tensor<4xf32> {
%0 = "tfl.pseudo_const" () {value = dense<1.0> : tensor<4xf32>} : () -> tensor<4xf32> loc("Const")
%1 = "tfl.squared_difference"(%arg0, %0) {fused_activation_function = "NONE"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> loc("squared_difference")
%2 = "tfl.mul"(%0, %1) {fused_activation_function = "NONE"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> loc("mul")
return %2 : tensor<4xf32>
// CHECK-LABEL: main
// CHECK-NOT: tfl.squared_difference
// CHECK: tfl.mul %[[CONST:.*]], %arg0
}

View File

@ -0,0 +1,15 @@
// RUN: flatbuffer_translate -mlir-to-tflite-flatbuffer %s -o - | flatbuffer_translate --tflite-flatbuffer-to-mlir - -o - | FileCheck --dump-input-on-failure %s
// Ensure lstm roundtrip exactly
func @main(%arg0: tensor<4 x f32>, %arg1: tensor<4 x f32>, %arg2: tensor<4 x f32>, %arg3: tensor<4 x f32>, %arg4: tensor<4 x f32>, %arg5: tensor<4 x f32>, %arg6: tensor<4 x f32>, %arg7: tensor<4 x f32>, %arg8: tensor<4 x f32>, %arg9: tensor<4 x f32>, %arg10: tensor<4 x f32>, %arg11: tensor<4 x f32>, %arg12: tensor<4 x f32>, %arg13: tensor<4 x f32>, %arg14: tensor<4 x f32>, %arg15: tensor<4 x f32>, %arg16: tensor<4 x f32>, %arg17: tensor<4 x f32>, %arg18: tensor<4 x f32>, %arg19: tensor<4 x f32>, %arg20: tensor<4 x f32>, %arg21: tensor<4 x f32>) -> tensor<4 x f32> {
%cst0 = "tfl.pseudo_const" () {value = dense<0.0> : tensor<4xf32>} : () -> tensor<4xf32> loc("Const")
%cst1 = "tfl.pseudo_const" () {value = dense<0.0> : tensor<4xf32>} : () -> tensor<4xf32> loc("Const")
%24 = "tfl.lstm"(%arg0, %arg1, %arg2, %arg3, %arg4, %arg5, %arg6, %arg7, %arg8, %arg9, %arg10, %arg11, %arg12, %arg13, %arg14, %arg15, %arg16, %arg17, %cst0, %cst1, %arg18, %arg19, %arg20, %arg21) ({}) {fused_activation_function = "NONE", kernel_type = "FULL"} : (tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
return %24 : tensor<4xf32>
// CHECK-LABEL: main
// seperate lines since there is no region for this op. third_party/tensorflow/compiler/mlir/lite/ir/tfl_ops.td: 3252
// CHECK: %[[RES0:.*]] = "tfl.lstm"(%arg0, %arg1, %arg2, %arg3, %arg4, %arg5, %arg6, %arg7, %arg8, %arg9, %arg10, %arg11, %arg12, %arg13, %arg14, %arg15, %arg16, %arg17, %arg22, %arg23, %arg18, %arg19, %arg20, %arg21) ( {
// CHECK: }) {cell_clip = 0.000000e+00 : f32, fused_activation_function = "NONE", kernel_type = "FULL", proj_clip = 0.000000e+00 : f32} : (tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
// CHECK: return %[[RES0]]
}

View File

@ -123,6 +123,17 @@ func @softmax(%arg0: tensor<8x16xf32>) -> tensor<8x16xf32> {
// CHECK: "tfl.softmax"(%arg0) {beta = 1.000000e+00 : f32} : (tensor<8x16xf32>) -> tensor<8x16xf32>
}
func @softplus(%arg0: tensor<8x16xf32>) -> tensor<8x16xf32> {
%0 = "tf.Softplus"(%arg0) : (tensor<8x16xf32>) -> tensor<8x16xf32>
return %0 : tensor<8x16xf32>
// CHECK-LABEL: softplus
// CHECK-NEXT: %[[cst:.*]] = constant dense<1.000000e+00> : tensor<f32>
// CHECK-NEXT: %[[exp:.*]] = "tfl.exp"(%arg0) : (tensor<8x16xf32>) -> tensor<8x16xf32>
// CHECK-NEXT: %[[add:.*]] = "tfl.add"(%[[exp]], %[[cst]]) {fused_activation_function = "NONE"} : (tensor<8x16xf32>, tensor<f32>) -> tensor<8x16xf32>
// CHECK-NEXT: %[[log:.*]] = "tfl.log"(%[[add]]) : (tensor<8x16xf32>) -> tensor<8x16xf32>
}
func @fakeQuantArgsFalse(%arg0: tensor<8x8x8x8xf32>) -> tensor<8x8x8x8xf32> {
%0 = "tf.FakeQuantWithMinMaxArgs"(%arg0) {min = -0.1 : f32, max = 0.2 : f32, num_bits = 3, narrow_range = false} : (tensor<8x8x8x8xf32>) -> tensor<8x8x8x8xf32>
return %0 : tensor<8x8x8x8xf32>
@ -1453,3 +1464,19 @@ func @LstmWithProjection(%arg: tensor<28x1x16xf32>) -> (tensor<28x1x8xf32>) {
// CHECK: [[VAL_15:%.*]] = "tfl.unidirectional_sequence_lstm"([[VAL_7]], [[VAL_8]], [[VAL_8]], [[VAL_8]], [[VAL_8]], [[VAL_9]], [[VAL_9]], [[VAL_9]], [[VAL_9]], [[VAL_14]], [[VAL_14]], [[VAL_14]], [[VAL_10]], [[VAL_10]], [[VAL_10]], [[VAL_10]], [[VAL_12]], [[VAL_14]], [[VAL_13]], [[VAL_11]], [[VAL_14]], [[VAL_14]], [[VAL_14]], [[VAL_14]]) {cell_clip = 1.000000e+01 : f32, fused_activation_function = "TANH", proj_clip = 0.000000e+00 : f32, time_major = true} : (tensor<28x1x16xf32>, tensor<16x16xf32>, tensor<16x16xf32>, tensor<16x16xf32>, tensor<16x16xf32>, tensor<16x8xf32>, tensor<16x8xf32>, tensor<16x8xf32>, tensor<16x8xf32>, none, none, none, tensor<16xf32>, tensor<16xf32>, tensor<16xf32>, tensor<16xf32>, tensor<8x16xf32>, none, tensor<1x8xf32>, tensor<1x16xf32>, none, none, none, none) -> tensor<28x1x8xf32>
// CHECK: return [[VAL_15]] : tensor<28x1x8xf32>
// CHECK: }
func @UnidirectionalRnn(%arg: tensor<28x1x28xf32>) -> (tensor<28x1x28xf32>) {
%1 = "tf.Const"() {device = "", dtype = f32, value = dense<0.000000e+00>: tensor<28x28xf32>} : () -> tensor<28x28xf32>
%2 = "tf.Const"() {device = "", dtype = f32, value = dense<0.000000e+00>: tensor<28xf32>} : () -> tensor<28xf32>
%3 = "tf.Const"() {device = "", dtype = f32, value = dense<0.000000e+00>: tensor<1x28xf32>} : () -> tensor<1x28xf32>
%4:2 = "tf.UnidirectionalSequenceRnn"(%arg, %1, %1, %2, %3) {_tflite_input_indices = [0, 1, 2, 3, 4], device = ""} : (tensor<28x1x28xf32>, tensor<28x28xf32>, tensor<28x28xf32>, tensor<28xf32>, tensor<1x28xf32>) -> (tensor<*xf32>, tensor<28x1x28xf32>)
return %4#1 : tensor<28x1x28xf32>
}
// CHECK: func @UnidirectionalRnn([[VAL_0:%.*]]: tensor<28x1x28xf32>) -> tensor<28x1x28xf32> {
// CHECK: [[VAL_1:%.*]] = constant dense<0.000000e+00> : tensor<28x28xf32>
// CHECK: [[VAL_2:%.*]] = constant dense<0.000000e+00> : tensor<28xf32>
// CHECK: [[VAL_3:%.*]] = constant dense<0.000000e+00> : tensor<1x28xf32>
// CHECK: [[VAL_4:%.*]] = "tfl.unidirectional_sequence_rnn"([[VAL_0]], [[VAL_1]], [[VAL_1]], [[VAL_2]], [[VAL_3]]) {fused_activation_function = "TANH", time_major = true} : (tensor<28x1x28xf32>, tensor<28x28xf32>, tensor<28x28xf32>, tensor<28xf32>, tensor<1x28xf32>) -> tensor<28x1x28xf32>
// CHECK: return [[VAL_4]] : tensor<28x1x28xf32>
// CHECK: }

View File

@ -878,6 +878,14 @@ func @pack(%arg0: tensor<2xi32>, %arg1: tensor<2xi32>) -> tensor<2x2xi32> {
// -----
func @packUnranked(%arg0: tensor<2xi32>, %arg1: tensor<*xi32>) -> tensor<2x2xi32> {
// CHECK: "tfl.pack"(%arg0, %arg1) {axis = 0 : i32, values_count = 2 : i32}
%0 = "tfl.pack"(%arg0, %arg1) {axis = 0 : i32, values_count = 2 : i32} : (tensor<2xi32>, tensor<*xi32>) -> tensor<2x2xi32>
return %0 : tensor<2x2xi32>
}
// -----
func @packInputRank(%arg0: tensor<1x4xi32>, %arg1: tensor<1x4xi32>) -> tensor<1x4x2xi32> {
// CHECK: "tfl.pack"(%arg0, %arg1) {axis = 2 : i32, values_count = 2 : i32}
%0 = "tfl.pack"(%arg0, %arg1) {axis = 2 : i32, values_count = 2 : i32} : (tensor<1x4xi32>, tensor<1x4xi32>) -> tensor<1x4x2xi32>

View File

@ -154,7 +154,7 @@ func @layernormalizedlstmcellsimple(%arg0: tensor<1x?xf32>, %arg1: tensor<3x4xf3
// -----
module {
func @inference_standard_lstm_7410(%arg0: tensor<?x8x8xf32>, %arg1: tensor<?x10xf32>, %arg2: tensor<?x10xf32>, %arg3: tensor<8x40xf32>, %arg4: tensor<10x40xf32>, %arg5: tensor<40xf32>) -> (tensor<?x10xf32>, tensor<?x?x10xf32>, tensor<?x10xf32>, tensor<?x10xf32>, tensor<f32>) attributes {tf._input_shapes = ["tfshape$dim { size: -1 } dim { size: 8 } dim { size: 8 }", "tfshape$dim { size: -1 } dim { size: 10 }", "tfshape$dim { size: -1 } dim { size: 10 }", "tfshape$unknown_rank: true", "tfshape$unknown_rank: true", "tfshape$unknown_rank: true"], tf.api_implements = "lstm_b4e9f0e7-ac55-42bc-8ef2-8496419a608c", tf.api_preferred_device = "CPU", tf.signature.is_stateful} {
func @inference_standard_lstm_time_major(%arg0: tensor<?x8x8xf32>, %arg1: tensor<?x10xf32>, %arg2: tensor<?x10xf32>, %arg3: tensor<8x40xf32>, %arg4: tensor<10x40xf32>, %arg5: tensor<40xf32>) -> (tensor<?x10xf32>, tensor<?x?x10xf32>, tensor<?x10xf32>, tensor<?x10xf32>, tensor<f32>) attributes {tf._input_shapes = ["tfshape$dim { size: -1 } dim { size: 8 } dim { size: 8 }", "tfshape$dim { size: -1 } dim { size: 10 }", "tfshape$dim { size: -1 } dim { size: 10 }", "tfshape$unknown_rank: true", "tfshape$unknown_rank: true", "tfshape$unknown_rank: true"], tf.api_implements = "lstm_b4e9f0e7-ac55-42bc-8ef2-8496419a608c", tf.api_preferred_device = "CPU", tf.go_backwards = true, tf.time_major = true} {
%0 = "tf.BatchMatMulV2"(%arg0, %arg3) {adj_x = false, adj_y = false} : (tensor<?x8x8xf32>, tensor<8x40xf32>) -> tensor<?x8x40xf32>
%1 = "tf.Add"(%0, %arg5) : (tensor<?x8x40xf32>, tensor<40xf32>) -> tensor<?x8x40xf32>
%2 = "tf.BatchMatMulV2"(%1, %arg4) {adj_x = false, adj_y = true} : (tensor<?x8x40xf32>, tensor<10x40xf32>) -> tensor<?x8x10xf32>
@ -165,7 +165,7 @@ func @inference_standard_lstm_7410(%arg0: tensor<?x8x8xf32>, %arg1: tensor<?x10x
return %5, %4, %5, %5, %6 : tensor<?x10xf32>, tensor<?x?x10xf32>, tensor<?x10xf32>, tensor<?x10xf32>, tensor<f32>
}
// CHECK: func @inference_standard_lstm_7410([[VAL_0:%.*]]: tensor<?x8x8xf32>, [[VAL_1:%.*]]: tensor<?x10xf32>, [[VAL_2:%.*]]: tensor<?x10xf32>, [[VAL_3:%.*]]: tensor<8x40xf32>, [[VAL_4:%.*]]: tensor<10x40xf32>, [[VAL_5:%.*]]: tensor<40xf32>) -> tensor<?x8x10xf32> attributes {tf._input_shapes = ["tfshape$dim { size: -1 } dim { size: 8 } dim { size: 8 }", "tfshape$dim { size: -1 } dim { size: 10 }", "tfshape$dim { size: -1 } dim { size: 10 }", "tfshape$unknown_rank: true", "tfshape$unknown_rank: true", "tfshape$unknown_rank: true"], tf.api_implements = "lstm_b4e9f0e7-ac55-42bc-8ef2-8496419a608c", tf.api_preferred_device = "CPU", tf.signature.is_stateful} {
// CHECK: func @inference_standard_lstm_time_major([[VAL_0:%.*]]: tensor<?x8x8xf32>, [[VAL_1:%.*]]: tensor<?x10xf32>, [[VAL_2:%.*]]: tensor<?x10xf32>, [[VAL_3:%.*]]: tensor<8x40xf32>, [[VAL_4:%.*]]: tensor<10x40xf32>, [[VAL_5:%.*]]: tensor<40xf32>) -> tensor<8x?x10xf32> attributes {tf._input_shapes = ["tfshape$dim { size: -1 } dim { size: 8 } dim { size: 8 }", "tfshape$dim { size: -1 } dim { size: 10 }", "tfshape$dim { size: -1 } dim { size: 10 }", "tfshape$unknown_rank: true", "tfshape$unknown_rank: true", "tfshape$unknown_rank: true"], tf.api_implements = "lstm_b4e9f0e7-ac55-42bc-8ef2-8496419a608c", tf.api_preferred_device = "CPU", tf.go_backwards = true, tf.time_major = true} {
// CHECK: [[VAL_6:%.*]] = constant dense<[1, 0]> : tensor<2xi64>
// CHECK: [[VAL_7:%.*]] = "tf.Transpose"([[VAL_3]], [[VAL_6]]) : (tensor<8x40xf32>, tensor<2xi64>) -> tensor<40x8xf32>
// CHECK: [[VAL_8:%.*]] = constant dense<[1, 0]> : tensor<2xi64>
@ -181,7 +181,46 @@ func @inference_standard_lstm_7410(%arg0: tensor<?x8x8xf32>, %arg1: tensor<?x10x
// CHECK: [[VAL_18:%.*]]:4 = "tf.SplitV"([[VAL_5]], [[VAL_16]], [[VAL_17]]) : (tensor<40xf32>, tensor<4xi32>, tensor<i32>) -> (tensor<10xf32>, tensor<10xf32>, tensor<10xf32>, tensor<10xf32>)
// CHECK: [[VAL_19:%.*]] = constant unit
// CHECK: [[VAL_20:%.*]] = "tfl.lstm"([[VAL_0]], [[VAL_12]]#0, [[VAL_12]]#1, [[VAL_12]]#2, [[VAL_12]]#3, [[VAL_15]]#0, [[VAL_15]]#1, [[VAL_15]]#2, [[VAL_15]]#3, [[VAL_19]], [[VAL_19]], [[VAL_19]], [[VAL_18]]#0, [[VAL_18]]#1, [[VAL_18]]#2, [[VAL_18]]#3, [[VAL_19]], [[VAL_19]], [[VAL_1]], [[VAL_2]], [[VAL_19]], [[VAL_19]], [[VAL_19]], [[VAL_19]]) ( {
// CHECK: }) {cell_clip = 1.000000e+01 : f32, fused_activation_function = "TANH", kernel_type = "FULL", proj_clip = 0.000000e+00 : f32} : (tensor<?x8x8xf32>, tensor<10x8xf32>, tensor<10x8xf32>, tensor<10x8xf32>, tensor<10x8xf32>, tensor<10x10xf32>, tensor<10x10xf32>, tensor<10x10xf32>, tensor<10x10xf32>, none, none, none, tensor<10xf32>, tensor<10xf32>, tensor<10xf32>, tensor<10xf32>, none, none, tensor<?x10xf32>, tensor<?x10xf32>, none, none, none, none) -> tensor<?x8x10xf32>
// CHECK: return [[VAL_21:%.*]] : tensor<?x8x10xf32>
// CHECK: }) {cell_clip = 1.000000e+01 : f32, fused_activation_function = "TANH", kernel_type = "FULL", proj_clip = 0.000000e+00 : f32} : (tensor<?x8x8xf32>, tensor<10x8xf32>, tensor<10x8xf32>, tensor<10x8xf32>, tensor<10x8xf32>, tensor<10x10xf32>, tensor<10x10xf32>, tensor<10x10xf32>, tensor<10x10xf32>, none, none, none, tensor<10xf32>, tensor<10xf32>, tensor<10xf32>, tensor<10xf32>, none, none, tensor<?x10xf32>, tensor<?x10xf32>, none, none, none, none) -> tensor<8x?x10xf32>
// CHECK: return [[VAL_21:%.*]] : tensor<8x?x10xf32>
// CHECK: }
}
// -----
module {
func @inference_standard_lstm_non_time_major(%arg0: tensor<8x8x8xf32>, %arg1: tensor<?x10xf32>, %arg2: tensor<?x10xf32>, %arg3: tensor<8x40xf32>, %arg4: tensor<10x40xf32>, %arg5: tensor<40xf32>) -> (tensor<?x10xf32>, tensor<8x8x10xf32>, tensor<?x10xf32>, tensor<?x10xf32>, tensor<f32>) attributes {tf._input_shapes = ["tfshape$dim { size: -1 } dim { size: 8 } dim { size: 8 }", "tfshape$dim { size: -1 } dim { size: 10 }", "tfshape$dim { size: -1 } dim { size: 10 }", "tfshape$unknown_rank: true", "tfshape$unknown_rank: true", "tfshape$unknown_rank: true"], tf.api_implements = "lstm_b4e9f0e7-ac55-42bc-8ef2-8496419a608c", tf.api_preferred_device = "CPU", tf.go_backwards = true, tf.time_major = false} {
%0 = "tf.BatchMatMulV2"(%arg0, %arg3) {adj_x = false, adj_y = false} : (tensor<8x8x8xf32>, tensor<8x40xf32>) -> tensor<8x8x40xf32>
%1 = "tf.Add"(%0, %arg5) : (tensor<8x8x40xf32>, tensor<40xf32>) -> tensor<8x8x40xf32>
%2 = "tf.BatchMatMulV2"(%1, %arg4) {adj_x = false, adj_y = true} : (tensor<8x8x40xf32>, tensor<10x40xf32>) -> tensor<8x8x10xf32>
%3 = "tf.Add"(%2, %arg1) : (tensor<8x8x10xf32>, tensor<?x10xf32>) -> tensor<8x8x10xf32>
%4 = "tf.Add"(%2, %arg2) : (tensor<8x8x10xf32>, tensor<?x10xf32>) -> tensor<8x8x10xf32>
%5 = "tf.Add"(%arg1, %arg2) : (tensor<?x10xf32>, tensor<?x10xf32>) -> tensor<?x10xf32>
%6 = "tf.Const"() {_output_shapes = ["tfshape$"], device = "/device:CPU:0", dtype = f32, value = dense<1.000000e+00> : tensor<f32>} : () -> tensor<f32>
return %5, %4, %5, %5, %6 : tensor<?x10xf32>, tensor<8x8x10xf32>, tensor<?x10xf32>, tensor<?x10xf32>, tensor<f32>
}
// CHECK: func @inference_standard_lstm_non_time_major([[VAL_0:%.*]]: tensor<8x8x8xf32>, [[VAL_1:%.*]]: tensor<?x10xf32>, [[VAL_2:%.*]]: tensor<?x10xf32>, [[VAL_3:%.*]]: tensor<8x40xf32>, [[VAL_4:%.*]]: tensor<10x40xf32>, [[VAL_5:%.*]]: tensor<40xf32>) -> tensor<8x8x10xf32> attributes {tf._input_shapes = ["tfshape$dim { size: -1 } dim { size: 8 } dim { size: 8 }", "tfshape$dim { size: -1 } dim { size: 10 }", "tfshape$dim { size: -1 } dim { size: 10 }", "tfshape$unknown_rank: true", "tfshape$unknown_rank: true", "tfshape$unknown_rank: true"], tf.api_implements = "lstm_b4e9f0e7-ac55-42bc-8ef2-8496419a608c", tf.api_preferred_device = "CPU", tf.go_backwards = true, tf.time_major = false} {
// CHECK: [[VAL_6:%.*]] = constant dense<[1, 0, 2]> : tensor<3xi64>
// CHECK: [[VAL_7:%.*]] = "tf.Transpose"([[VAL_0]], [[VAL_6]]) : (tensor<8x8x8xf32>, tensor<3xi64>) -> tensor<8x8x8xf32>
// CHECK: [[VAL_8:%.*]] = constant dense<[1, 0]> : tensor<2xi64>
// CHECK: [[VAL_9:%.*]] = "tf.Transpose"([[VAL_3]], [[VAL_8]]) : (tensor<8x40xf32>, tensor<2xi64>) -> tensor<40x8xf32>
// CHECK: [[VAL_10:%.*]] = constant dense<[1, 0]> : tensor<2xi64>
// CHECK: [[VAL_11:%.*]] = "tf.Transpose"([[VAL_4]], [[VAL_10]]) : (tensor<10x40xf32>, tensor<2xi64>) -> tensor<40x10xf32>
// CHECK: [[VAL_12:%.*]] = "tf.Const"() {value = dense<10> : tensor<4xi32>} : () -> tensor<4xi32>
// CHECK: [[VAL_13:%.*]] = "tf.Const"() {value = dense<0> : tensor<i32>} : () -> tensor<i32>
// CHECK: [[VAL_14:%.*]]:4 = "tf.SplitV"([[VAL_9]], [[VAL_12]], [[VAL_13]]) : (tensor<40x8xf32>, tensor<4xi32>, tensor<i32>) -> (tensor<10x8xf32>, tensor<10x8xf32>, tensor<10x8xf32>, tensor<10x8xf32>)
// CHECK: [[VAL_15:%.*]] = "tf.Const"() {value = dense<10> : tensor<4xi32>} : () -> tensor<4xi32>
// CHECK: [[VAL_16:%.*]] = "tf.Const"() {value = dense<0> : tensor<i32>} : () -> tensor<i32>
// CHECK: [[VAL_17:%.*]]:4 = "tf.SplitV"([[VAL_11]], [[VAL_15]], [[VAL_16]]) : (tensor<40x10xf32>, tensor<4xi32>, tensor<i32>) -> (tensor<10x10xf32>, tensor<10x10xf32>, tensor<10x10xf32>, tensor<10x10xf32>)
// CHECK: [[VAL_18:%.*]] = "tf.Const"() {value = dense<10> : tensor<4xi32>} : () -> tensor<4xi32>
// CHECK: [[VAL_19:%.*]] = "tf.Const"() {value = dense<0> : tensor<i32>} : () -> tensor<i32>
// CHECK: [[VAL_20:%.*]]:4 = "tf.SplitV"([[VAL_5]], [[VAL_18]], [[VAL_19]]) : (tensor<40xf32>, tensor<4xi32>, tensor<i32>) -> (tensor<10xf32>, tensor<10xf32>, tensor<10xf32>, tensor<10xf32>)
// CHECK: [[VAL_21:%.*]] = constant unit
// CHECK: [[VAL_22:%.*]] = "tfl.lstm"([[VAL_0]], [[VAL_14]]#0, [[VAL_14]]#1, [[VAL_14]]#2, [[VAL_14]]#3, [[VAL_17]]#0, [[VAL_17]]#1, [[VAL_17]]#2, [[VAL_17]]#3, [[VAL_21]], [[VAL_21]], [[VAL_21]], [[VAL_20]]#0, [[VAL_20]]#1, [[VAL_20]]#2, [[VAL_20]]#3, [[VAL_21]], [[VAL_21]], [[VAL_1]], [[VAL_2]], [[VAL_21]], [[VAL_21]], [[VAL_21]], [[VAL_21]]) ( {
// CHECK: }) {cell_clip = 1.000000e+01 : f32, fused_activation_function = "TANH", kernel_type = "FULL", proj_clip = 0.000000e+00 : f32} : (tensor<8x8x8xf32>, tensor<10x8xf32>, tensor<10x8xf32>, tensor<10x8xf32>, tensor<10x8xf32>, tensor<10x10xf32>, tensor<10x10xf32>, tensor<10x10xf32>, tensor<10x10xf32>, none, none, none, tensor<10xf32>, tensor<10xf32>, tensor<10xf32>, tensor<10xf32>, none, none, tensor<?x10xf32>, tensor<?x10xf32>, none, none, none, none) -> tensor<8x8x10xf32>
// CHECK: [[VAL_23:%.*]] = constant dense<[1, 0, 2]> : tensor<3xi64>
// CHECK: [[VAL_24:%.*]] = "tf.Transpose"([[VAL_25:%.*]], [[VAL_23]]) : (tensor<8x8x10xf32>, tensor<3xi64>) -> tensor<8x8x10xf32>
// CHECK: return [[VAL_24]] : tensor<8x8x10xf32>
// CHECK: }
}

View File

@ -622,3 +622,16 @@ func @QuantizeSharedBiases2(
// CHECK: %{{.*}} = tfl.add %{{.*}}, %[[dq_0]]
// CHECK: %{{.*}} = "tfl.conv_2d"(%{{.*}}, %{{.*}}, %[[dq]])
}
// CHECK-LABEL: ReturnQuantizedResult
func @ReturnQuantizedResult(%arg0: tensor<1x224x224x3xf32>, %arg1: tensor<32x3x3x3xf32>, %arg2: tensor<32xf32>) -> (tensor<1x112x112x32xf32>, tensor<1x112x112x32xf32>) {
%0 = "tfl.depthwise_conv_2d"(%arg0, %arg1, %arg2) {depth_multiplier = 4 : i32, dilation_h_factor = 1 : i32, dilation_w_factor = 1 : i32, fused_activation_function = "NONE", padding = "VALID", stride_h = 4 : i32, stride_w = 5 : i32} : (tensor<1x224x224x3xf32>, tensor<32x3x3x3xf32>, tensor<32xf32>) -> tensor<1x112x112x32xf32>
%1 = "tfl.quantize"(%0) {qtype = tensor<1x112x112x32x!quant.uniform<u8:f32, 0.023528476789885875>>} : (tensor<1x112x112x32xf32>) -> tensor<1x112x112x32x!quant.uniform<u8:f32, 0.023528476789885875>>
%2 = "tfl.dequantize"(%1) : (tensor<1x112x112x32x!quant.uniform<u8:f32, 0.023528476789885875>>) -> (tensor<1x112x112x32xf32>)
return %0, %2 : tensor<1x112x112x32xf32>, tensor<1x112x112x32xf32>
// CHECK: %[[dw:.*]] = "tfl.depthwise_conv_2d"(%arg0, %arg1, %arg2)
// CHECK: %[[q:.*]] = "tfl.quantize"(%[[dw]])
// CHECK: %[[dq:.*]] = "tfl.dequantize"(%[[q]])
// CHECK: return %[[dq]], %[[dq]]
}

View File

@ -1,22 +1,28 @@
// Test to verify loop outlining.
// RUN: tf-opt --split-input-file --tfl-while-loop-outline %s | FileCheck %s --dump-input-on-failure
// Check that while loop outlining is nop if re-ran.
// RUN: tf-opt --tfl-while-loop-outline %s -o %t1
// RUN: tf-opt --tfl-while-loop-outline %t1 -o %t2
// RUN: diff %t1 %t2
// CHECK-LABEL: func @while
func @while() -> tensor<1xf32>
attributes {tf.entry_function = {outputs = "result"}} {
%cst = constant dense<1> : tensor<i32> loc("dec")
%arg0 = constant dense<5> : tensor<i32> loc("N")
%arg1 = constant dense<3.0> : tensor<1xf32> loc("val")
%0:2 = "tfl.while"(%arg0, %arg1) ( {
%cst0 = constant dense<5> : tensor<i32> loc("N")
%cst1 = constant dense<3.0> : tensor<1xf32> loc("val")
%0:2 = "tfl.while"(%cst0, %cst1) ( {
^bb0(%arg2: tensor<*xi32>, %arg3: tensor<*xf32>):
// CHECK: call @WhileOp_cond
// CHECK-SAME: (tensor<*xi32>, tensor<*xf32>, tensor<i32>)
%cst_0 = constant dense<0> : tensor<i32>
%1 = "tfl.greater"(%arg2, %cst_0) : (tensor<*xi32>, tensor<i32>) -> tensor<i1>
"tfl.yield"(%1) : (tensor<i1>) -> ()
}, {
^bb0(%arg2: tensor<*xi32>, %arg3: tensor<*xf32>):
// CHECK: call @WhileOp_body
// CHECK-SAME: (tensor<*xi32>, tensor<*xf32>, tensor<i32>)
%1 = "tfl.sub"(%arg2, %cst) {fused_activation_function = "NONE"} :
(tensor<*xi32>, tensor<i32>) -> tensor<*xi32>
%2 = tfl.add %arg3, %arg3 {fused_activation_function = "NONE"} : tensor<*xf32>
@ -32,6 +38,52 @@ func @while() -> tensor<1xf32>
// -----
// CHECK-LABEL: func @while2
// Verify that while body//cond with implicitly captured values result in changing while operands/results.
func @while2() -> tensor<1xf32> attributes {tf.entry_function = {outputs = "result"}} {
%cst = constant dense<1> : tensor<i32>
%cst_0 = constant dense<5> : tensor<i32>
%cst_1 = constant dense<3.000000e+00> : tensor<1xf32>
// Verifies 3 operands post outlining.
// CHECK: "tfl.while"({{.*}}, {{.*}}, {{.*}}) (
%0:2 = "tfl.while"(%cst_0, %cst_1) ( {
^bb0(%arg0: tensor<*xi32>, %arg1: tensor<*xf32>): // no predecessors
// CHECK: call @WhileOp_cond
// CHECK-SAME: (tensor<*xi32>, tensor<*xf32>, tensor<i32>)
%1 = call @WhileOp_cond(%arg0, %arg1, %cst) : (tensor<*xi32>, tensor<*xf32>, tensor<i32>) -> tensor<i1>
"tfl.yield"(%1) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<*xi32>, %arg1: tensor<*xf32>): // no predecessors
// CHECK: call @WhileOp_body
// CHECK-SAME: (tensor<*xi32>, tensor<*xf32>, tensor<i32>)
%1:3 = call @WhileOp_body(%arg0, %arg1, %cst) : (tensor<*xi32>, tensor<*xf32>, tensor<i32>) -> (tensor<*xi32>, tensor<*xf32>, tensor<i32>)
"tfl.yield"(%1#0, %1#1) : (tensor<*xi32>, tensor<*xf32>) -> ()
}) : (tensor<i32>, tensor<1xf32>) -> (tensor<i32>, tensor<1xf32>) loc("WhileOp")
// CHECK: (tensor<i32>, tensor<1xf32>, tensor<i32>) ->
// CHECK-SAME: (tensor<i32>, tensor<1xf32>, tensor<i32>)
return %0#1 : tensor<1xf32>
}
func @WhileOp_cond(%arg0: tensor<*xi32>, %arg1: tensor<*xf32>, %arg2: tensor<i32>) -> tensor<i1> attributes {sym_visibility = "private"} {
%cst = constant dense<0> : tensor<i32>
%0 = "tfl.greater"(%arg0, %cst) : (tensor<*xi32>, tensor<i32>) -> tensor<i1>
return %0 : tensor<i1>
}
func @WhileOp_body(%arg0: tensor<*xi32>, %arg1: tensor<*xf32>, %arg2: tensor<i32>) -> (tensor<*xi32>, tensor<*xf32>, tensor<i32>) attributes {sym_visibility = "private"} {
%0 = "tfl.sub"(%arg0, %arg2) {fused_activation_function = "NONE"} : (tensor<*xi32>, tensor<i32>) -> tensor<*xi32>
%1 = tfl.add %arg1, %arg1 {fused_activation_function = "NONE"} : tensor<*xf32>
return %0, %1, %arg2 : tensor<*xi32>, tensor<*xf32>, tensor<i32>
}
// CHECK-LABEL: func @WhileOp_cond(
// CHECK: tfl.greater
// CHECK-LABEL: func @WhileOp_body(
// CHECK: tfl.sub
// CHECK: tfl.add
// -----
func @rnn(%arg0: tensor<4x4x3xf32> {tf.device = "/device:CPU:0"}) -> tensor<4x?x2xf32> attributes {tf.entry_function = {inputs = "Placeholder", outputs = "rnn/transpose_1"}} {
%cst = constant dense<0.000000e+00> : tensor<4x2xf32>
%cst_0 = constant dense<0.000000e+00> : tensor<8xf32>

View File

@ -13,7 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"

View File

@ -27,6 +27,7 @@ limitations under the License.
#include "mlir/IR/StandardTypes.h" // TF:llvm-project
#include "mlir/IR/TypeUtilities.h" // TF:llvm-project
#include "mlir/Pass/Pass.h" // TF:llvm-project
#include "tensorflow/compiler/mlir/lite/utils/validators.h"
#include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h"
namespace mlir {
@ -80,6 +81,17 @@ class ConvertTFDilatedConvOp : public OpRewritePattern<Conv2dOpTy> {
template <typename Conv2dOpTy>
PatternMatchResult ConvertTFDilatedConvOp<Conv2dOpTy>::matchAndRewrite(
Conv2dOpTy op, PatternRewriter& rewriter) const {
// Make sure Conv2D has 'VALID' padding.
if (op.template getAttrOfType<StringAttr>("padding").getValue() != "VALID") {
return Pattern::matchFailure();
}
// Make sure dilations are all ones if set.
const ArrayAttr& dilations =
op.template getAttrOfType<ArrayAttr>("dilations");
if (dilations && !TFIntListIsAllOnes(dilations)) {
return Pattern::matchFailure();
}
// Check if the ConvOp is preceded by a `Expand` op and succeeded by a
// `Squeeze` op.
Operation* prev_op = op.getOperation()->getPrevNode();
@ -90,6 +102,7 @@ PatternMatchResult ConvertTFDilatedConvOp<Conv2dOpTy>::matchAndRewrite(
TF::ExpandDimsOp expand_op;
TF::SqueezeOp squeeze_op;
int64_t expand_axis;
// Expand + Squeeze op.
if (llvm::isa<TF::ExpandDimsOp>(prev_op)) {
if (!llvm::isa<TF::SqueezeOp>(next_op)) {
@ -99,6 +112,22 @@ PatternMatchResult ConvertTFDilatedConvOp<Conv2dOpTy>::matchAndRewrite(
expand_op = llvm::cast<TF::ExpandDimsOp>(prev_op);
squeeze_op = llvm::cast<TF::SqueezeOp>(next_op);
// Make sure that the axis in `expand_op` is constant.
if (auto const_op =
llvm::dyn_cast<TF::ConstOp>(expand_op.dim().getDefiningOp())) {
expand_axis =
(*const_op.value().cast<DenseElementsAttr>().getIntValues().begin())
.getSExtValue();
} else {
return Pattern::matchFailure();
}
// Make sure that the `squeeze_dims` is equal to `expand_axis`.
auto squeeze_dims = squeeze_op.squeeze_dims();
if (squeeze_dims.size() != 1 ||
squeeze_dims[0].cast<IntegerAttr>().getInt() != expand_axis) {
return Pattern::matchFailure();
}
// Update previous/next op pointer.
prev_op = prev_op->getPrevNode();
if (!prev_op) return Pattern::matchFailure();
@ -108,10 +137,14 @@ PatternMatchResult ConvertTFDilatedConvOp<Conv2dOpTy>::matchAndRewrite(
// SpaceToBatchND op.
if (!llvm::isa<TF::SpaceToBatchNDOp>(prev_op)) return Pattern::matchFailure();
// TODO(b/149936532): Check `padding` input, currently ignored.
TF::SpaceToBatchNDOp stb_op = llvm::cast<TF::SpaceToBatchNDOp>(prev_op);
// Pad op.
TF::PadOp pad_op;
// TODO(b/149936532): Currently we just ignore the PadOp. However note that
// in real scenarios this may not always be correct: user can put a PadOp here
// with non-trivial consequences.
if (llvm::isa<TF::PadOp>(next_op)) {
pad_op = llvm::cast<TF::PadOp>(next_op);
next_op = next_op->getNextNode();
@ -119,6 +152,7 @@ PatternMatchResult ConvertTFDilatedConvOp<Conv2dOpTy>::matchAndRewrite(
}
// BatchToSpaceND + BiasAdd.
// TODO(b/149936532): Check the `crops` input, currently ignored.
TF::BatchToSpaceNDOp bts_op;
TF::BiasAddOp biasadd_op;
bool final_op_is_bts = true;
@ -146,14 +180,10 @@ PatternMatchResult ConvertTFDilatedConvOp<Conv2dOpTy>::matchAndRewrite(
if (!dilations_attr.hasValue()) return Pattern::matchFailure();
op.setAttr("dilations", dilations_attr.getValue());
// Here we need to set the correct padding for Conv op. In TF, the conv op
// inserted after 'SpaceToBatch' always has 'VALID' padding. This might
// become a problem here if the original Conv op has 'SAME' padding. When
// the original conv has 'SAME' padding, TF will set a non-zero padding for
// the 'SpaceToBatch' op, so we rely on this information to check if we need
// to change the padding from 'VALID' to 'SAME' (a.k.a when we see non-zero
// values in `stb_op.paddings`, we change the current Conv's padding to
// 'SAME').
// Padding is set to 'SAME' when `stb_op` has non-zero paddings.
// TODO(b/149936532): This assumption only holds when the input width & height
// is multiple of dilation width & height. We should fix it in order to
// support other use cases.
auto stb_paddings = stb_op.paddings();
ElementsAttr stb_paddings_attr;
if (matchPattern(stb_paddings, m_Constant(&stb_paddings_attr))) {
@ -175,7 +205,8 @@ PatternMatchResult ConvertTFDilatedConvOp<Conv2dOpTy>::matchAndRewrite(
auto input_shape = stb_op.input().getType().cast<ShapedType>().getShape();
SmallVector<int64_t, 4> expand_shape(input_shape.begin(),
input_shape.end());
expand_shape.push_back(1);
expand_shape.insert(expand_shape.begin() + expand_axis, 1);
auto expand_result_type = RankedTensorType::get(
expand_shape, getElementTypeOrSelf(stb_op.input()));
expand_op.getResult().setType(expand_result_type);
@ -208,7 +239,7 @@ ConvertTFDilatedConvOp<Conv2dOpTy>::ExtractDilationsAttrFromBlockShape(
ElementsAttr stb_bs_attr, bts_bs_attr;
if (!matchPattern(stb_block_shape, m_Constant(&stb_bs_attr)) ||
!matchPattern(bts_block_shape, m_Constant(&bts_bs_attr))) {
// Returns failure status if block shape is not a constant.
// Returns failure status if block_shape is not a constant.
return {};
}
// Check that the block_shape of `stb_op` and `bts_op` are equal.
@ -217,9 +248,8 @@ ConvertTFDilatedConvOp<Conv2dOpTy>::ExtractDilationsAttrFromBlockShape(
if (stb_bs_attr.getValue({i}) != bts_bs_attr.getValue({i})) return {};
}
// TODO(haoliang): support 1-D dilated conv.
// Set dilation factor.
if (stb_bs_attr.getNumElements() < 2) return {};
int dilation_h_factor =
stb_bs_attr.getValue({0}).cast<IntegerAttr>().getInt();
int dilation_w_factor =

View File

@ -22,7 +22,7 @@ limitations under the License.
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Casting.h"
#include "mlir/Analysis/LoopAnalysis.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Block.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project

View File

@ -15,7 +15,7 @@ limitations under the License.
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringMap.h"
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Block.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project

View File

@ -16,7 +16,7 @@ limitations under the License.
// TFLite legalization patterns
include "mlir/IR/OpBase.td"
include "mlir/Dialect/StandardOps/Ops.td"
include "mlir/Dialect/StandardOps/IR/Ops.td"
include "tensorflow/compiler/mlir/lite/ir/tfl_ops.td"
include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.td"
@ -167,6 +167,7 @@ def : Pat<(TF_SigmoidOp $arg), (TFL_LogisticOp $arg)>;
def : Pat<(TF_SinOp F32Tensor:$arg), (TFL_SinOp $arg)>;
def : Pat<(TF_SliceOp $input, $begin, $size), (TFL_SliceOp $input, $begin, $size)>;
def : Pat<(TF_SoftmaxOp $arg), (TFL_SoftmaxOp $arg, ConstF32Attr<"1.0">)>;
def : Pat<(TF_SoftplusOp F32Tensor:$arg0), (TFL_LogOp (TFL_AddOp (TFL_ExpOp $arg0), (ConstantOp ConstantAttr<RankedF32ElementsAttr<[]>, "1.0f">), TFL_AF_None))>;
def : Pat<(TF_SqueezeOp $arg, $squeeze_dims), (TFL_SqueezeOp $arg, $squeeze_dims)>;
def : Pat<(TF_TanhOp $arg), (TFL_TanhOp $arg)>;
def : Pat<(TF_TransposeOp $arg, $perm), (TFL_TransposeOp $arg, $perm)>;
@ -340,7 +341,7 @@ def : Pat<(TF_MatrixDiagOp $diagonal), (TFL_MatrixDiagOp $diagonal)>;
class I32VectorElementsAttr<int len> : ElementsAttrBase<
CPred<"$_self.isa<DenseIntElementsAttr>() &&"
"$_self.cast<DenseIntElementsAttr>().getType()."
"getElementType().isInteger(32)">,
"getElementType().isSignlessInteger(32)">,
"32-bit int elements attribute of shape [" # len # "]"> {
let storageType = [{ DenseIntElementsAttr }];

View File

@ -31,6 +31,7 @@ limitations under the License.
#include "mlir/Dialect/QuantOps/FakeQuantSupport.h" // TF:llvm-project
#include "mlir/Dialect/QuantOps/UniformSupport.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/MLIRContext.h" // TF:llvm-project
#include "mlir/IR/Operation.h" // TF:llvm-project
#include "mlir/IR/PatternMatch.h" // TF:llvm-project
#include "mlir/IR/StandardTypes.h" // TF:llvm-project
@ -64,6 +65,7 @@ using xla::Status;
using xla::StatusOr;
constexpr char kUnidirectionalSequenceLstm[] = "tf.UnidirectionalSequenceLstm";
constexpr char kUnidirectionalSequenceRnn[] = "tf.UnidirectionalSequenceRnn";
constexpr char kTfLiteInputIndices[] = "_tflite_input_indices";
// Legalize operations in functions.
@ -253,7 +255,7 @@ PatternMatchResult ConvertTFReshapeOp::matchAndRewrite(
ShapedType shape_type = shape.getType().cast<ShapedType>();
// The tfl reshape's #2 operand needs to i32 tensor type, so we have to cast.
if (!shape_type.getElementType().isInteger(32)) {
if (!shape_type.getElementType().isSignlessInteger(32)) {
auto new_shape = shape_type.getShape();
IntegerType new_ele_type = rewriter.getIntegerType(32);
ShapedType new_type = RankedTensorType::get(new_shape, new_ele_type);
@ -632,6 +634,66 @@ struct LegalizeUnidirectionalSequenceLstm : public RewritePattern {
}
};
// Legalize unidirectional seqeucen rnn.
struct LegalizeUnidirectionalSequenceRnn : public RewritePattern {
explicit LegalizeUnidirectionalSequenceRnn(MLIRContext* context)
: RewritePattern(kUnidirectionalSequenceRnn, 1, context) {}
PatternMatchResult matchAndRewrite(Operation* op,
PatternRewriter& rewriter) const override {
auto tflite_indices_attr =
op->getAttrOfType<ArrayAttr>(kTfLiteInputIndices);
if (!tflite_indices_attr) return matchFailure();
if (op->getNumOperands() != 5) {
op->emitError()
<< "We're expecting 5 inputs for UnidirectionalSequenceRNN, only "
<< op->getNumOperands() << " provided";
return matchFailure();
}
if (op->getNumResults() != 2) {
op->emitError()
<< "We're expecting 2 inputs for UnidirectionalSequenceRNN, only "
<< op->getNumResults() << " found";
return matchFailure();
}
// Populate inputs.
// UnidirectionalSequenceRnn is expected to have 5 inputs, and none of them
// are optional inputs.
SmallVector<Value, 5> inputs;
for (int i = 0; i < 5; ++i) {
inputs.push_back(op->getOperand(i));
}
// Populate outputs.
// UnidirectionalSequenceRnn should only have 1 output, and that is the
// original ophint converted node's 2nd output.
SmallVector<Type, 4> result_types;
result_types.push_back(op->getOpResult(1).getType());
// Populate attributes.
SmallVector<NamedAttribute, 2> attributes;
// Activation will always be tanh.
attributes.push_back(rewriter.getNamedAttr("fused_activation_function",
rewriter.getStringAttr("TANH")));
// will always be time_majored.
attributes.push_back(
rewriter.getNamedAttr("time_major", rewriter.getBoolAttr(true)));
auto rnn_op = rewriter.create<TFL::UnidirectionalSequenceRNNOp>(
op->getLoc(), result_types, inputs, attributes);
// Rewire the output.
op->getResult(1).replaceAllUsesWith(rnn_op.getResult());
op->erase();
return matchSuccess();
}
};
void LegalizeTF::runOnFunction() {
OwningRewritePatternList patterns;
auto* ctx = &getContext();
@ -647,7 +709,8 @@ void LegalizeTF::runOnFunction() {
ConvertTFReciprocalOp, ConvertTFRandomUniformOp>(ctx);
// Ophint python converter converted tf node pattern.
patterns.insert<LegalizeUnidirectionalSequenceLstm>(ctx);
patterns.insert<LegalizeUnidirectionalSequenceLstm,
LegalizeUnidirectionalSequenceRnn>(ctx);
applyPatternsGreedily(func, patterns);
}

View File

@ -15,7 +15,7 @@ limitations under the License.
// Converts TF While to TFL While with single call in body and cond.
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project
#include "mlir/IR/Operation.h" // TF:llvm-project

View File

@ -20,7 +20,7 @@ limitations under the License.
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "mlir/Dialect/QuantOps/QuantTypes.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project
#include "mlir/IR/MLIRContext.h" // TF:llvm-project
#include "mlir/Pass/Pass.h" // TF:llvm-project

View File

@ -32,7 +32,7 @@ limitations under the License.
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "mlir/Analysis/LoopAnalysis.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Block.h" // TF:llvm-project
#include "mlir/IR/Function.h" // TF:llvm-project
@ -335,8 +335,9 @@ struct ConvertTensorListInitOp : public OpConversionPattern<OpT> {
ConversionPatternRewriter &rewriter) const override {
Type dtype = op.element_dtype();
if (!(dtype.isF16() || dtype.isF32() || dtype.isF64() ||
dtype.isInteger(1) || dtype.isInteger(8) || dtype.isInteger(16) ||
dtype.isInteger(32) || dtype.isInteger(64))) {
dtype.isInteger(1) || dtype.isSignlessInteger(8) ||
dtype.isSignlessInteger(16) || dtype.isSignlessInteger(32) ||
dtype.isSignlessInteger(64))) {
op.emitError(
"requires element_dtype to be 1-bit/8-bit/16-bit/32-bit/64-bit "
"integer or 16-bit/32-bit/64-bit float type during TF Lite "

View File

@ -31,7 +31,7 @@ limitations under the License.
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Casting.h"
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Matchers.h" // TF:llvm-project
#include "mlir/IR/PatternMatch.h" // TF:llvm-project

View File

@ -16,7 +16,7 @@ limitations under the License.
// This is the optimization pattern definition file for TensorFlow Lite.
include "mlir/IR/OpBase.td"
include "mlir/Dialect/StandardOps/Ops.td"
include "mlir/Dialect/StandardOps/IR/Ops.td"
include "tensorflow/compiler/mlir/lite/ir/tfl_ops.td"
include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.td"

View File

@ -16,7 +16,7 @@ limitations under the License.
// This is the quantization pattern definition file for TensorFlow Lite.
include "mlir/IR/OpBase.td"
include "mlir/Dialect/StandardOps/Ops.td"
include "mlir/Dialect/StandardOps/IR/Ops.td"
include "tensorflow/compiler/mlir/lite/ir/tfl_ops.td"
// Both Quantize and Dequantize ops have side effects, so we have to define

View File

@ -23,7 +23,7 @@ limitations under the License.
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project
#include "mlir/IR/Function.h" // TF:llvm-project

View File

@ -19,6 +19,7 @@ limitations under the License.
#include "absl/memory/memory.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/CommandLine.h"
#include "mlir/Dialect/QuantOps/QuantOps.h" // TF:llvm-project
@ -115,6 +116,10 @@ class PrepareQuantizePass : public FunctionPass<PrepareQuantizePass> {
}
}
// Apply some sanity check and report some warnings for those don't follow
// the best quantization practise. This also fixes some simple violations.
void SanityCheckAndAdjustment(FuncOp func);
QuantizationSpecs quant_specs_;
};
@ -184,13 +189,56 @@ bool PrepareQuantizePass::RemoveRedundantStats(FuncOp func) {
return RemoveRedundantStatsOps(func, GetOpQuantSpec);
}
static Value Quantized(Operation* user) {
if (auto q = llvm::dyn_cast_or_null<quant::QuantizeCastOp>(user)) {
if (auto dq = llvm::dyn_cast_or_null<quant::DequantizeCastOp>(
*q.getResult().user_begin())) {
return dq.getResult();
}
}
return {};
}
void PrepareQuantizePass::SanityCheckAndAdjustment(FuncOp func) {
// If an op output has two users: one of them is a quantize op and another
// one is returned directly, we decide to return the quantized result instead,
// so this op can be quantized. This is only applied on the returned result
// because the error will not be accumulated.
func.walk([&](ReturnOp ret) {
int i = 0;
for (Value returned : ret.operands()) {
llvm::SmallVector<Value, 4> quantized;
for (auto user : returned.getUsers()) {
if (auto q = Quantized(user)) {
quantized.push_back(q);
}
}
if (quantized.size() == 1) {
ret.setOperand(i, quantized.front());
}
i++;
}
});
// We prefer to placing quantization emulation ops on the results of the
// concat ops.
func.walk([&](ConcatenationOp concat) {
if (concat.output().hasOneUse() &&
Quantized(*concat.output().user_begin())) {
return;
}
concat.emitWarning(
"Missing quantization parameter on the output might introduce "
"quantization error!");
});
}
using PrepareQuantStats =
quant::ConvertStatsToQDQs<quant::QuantizeCastOp, quant::DequantizeCastOp>;
void PrepareQuantizePass::runOnFunction() {
FuncOp func = getFunction();
MLIRContext* ctx = func.getContext();
ConvertTFLQuantOpsToMlirQuantOps(func);
if (quant_specs_.post_training_quantization) {
@ -220,6 +268,8 @@ void PrepareQuantizePass::runOnFunction() {
}
applyPatternsGreedily(func, patterns);
SanityCheckAndAdjustment(func);
// Finally, the quantization parameters can be propagated to the rest of the
// values (tensors).
ApplyQuantizationParamsPropagation(func, is_signed, disable_per_channel,

View File

@ -16,7 +16,7 @@ limitations under the License.
// This is the quantization pattern definition file for TensorFlow Lite.
include "mlir/IR/OpBase.td"
include "mlir/Dialect/StandardOps/Ops.td"
include "mlir/Dialect/StandardOps/IR/Ops.td"
include "tensorflow/compiler/mlir/lite/ir/tfl_ops.td"
// Quantize attribute $0 by using quantization parameter from %1.

View File

@ -18,7 +18,7 @@ limitations under the License.
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/Casting.h"
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Block.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project

View File

@ -14,7 +14,7 @@ limitations under the License.
==============================================================================*/
include "mlir/IR/OpBase.td"
include "mlir/Dialect/StandardOps/Ops.td"
include "mlir/Dialect/StandardOps/IR/Ops.td"
include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.td"
//===----------------------------------------------------------------------===//

View File

@ -20,7 +20,7 @@ limitations under the License.
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project
#include "mlir/IR/Identifier.h" // TF:llvm-project
#include "mlir/IR/Location.h" // TF:llvm-project

View File

@ -17,7 +17,7 @@ limitations under the License.
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project
#include "mlir/IR/Identifier.h" // TF:llvm-project
#include "mlir/IR/Location.h" // TF:llvm-project
@ -52,25 +52,47 @@ class WhileOutlinePass : public mlir::ModulePass<WhileOutlinePass> {
tensorflow::OpOrArgLocNameMapper mapper_;
};
} // namespace
std::string WhileOutlinePass::GetName(Operation* op, StringRef suffix) {
return (mapper_.GetUniqueName(op) + suffix).str();
}
// Returns whether the WhileOp is already outlined (e.g., only consists of calls
// to functions).
static bool IsAlreadyOutlinedd(WhileOp while_op) {
auto just_call = [](Region& region) {
auto it = region.front().begin();
if (!isa<CallOp>(*it)) return false;
++it;
if (!isa<YieldOp>(*it)) return false;
return true;
};
return just_call(while_op.body()) && just_call(while_op.cond());
}
void WhileOutlinePass::OutlineWhile(WhileOp while_op) {
OpBuilder builder(&getContext());
// Colect external values used. Note: if an external value is also passed in
// via argument, then it could end up being passed in multiple times. In the
// case where the value was already just passed through, this will result in
// redundancy.
// Collect external values used.
llvm::SetVector<Value> extern_values;
// Sink down none type constants into the functions.
// The basic block arguments correspond to values that are loop carried, while
// all those post are loop independent. Initialize extern_values with while_op
// not loop carried operands.
auto num_loop_carried = while_op.cond().front().getNumArguments();
auto not_carried_operands =
while_op.getOperands().drop_front(num_loop_carried);
extern_values.insert(not_carried_operands.begin(),
not_carried_operands.end());
auto old_extern_values_size = extern_values.size();
llvm::SmallVector<Region*, 2> regions{&while_op.cond(), &while_op.body()};
for (auto it : llvm::enumerate(regions)) {
llvm::SetVector<Value> region_extern_values;
Value const_none = nullptr;
getUsedValuesDefinedAbove(*it.value(), region_extern_values);
// Sink down none type constants into the functions.
for (auto extern_value : region_extern_values) {
if (!extern_value.getType().isa<NoneType>()) {
extern_values.insert(extern_value);
@ -89,12 +111,23 @@ void WhileOutlinePass::OutlineWhile(WhileOp while_op) {
}
}
// Colect new types.
bool has_extra_extern_values = old_extern_values_size != extern_values.size();
// If an extern value is already an operand post the loop carried operands,
// then it need not be passed in again.
// Compute all the extra operands that have to be added to the while.
llvm::SetVector<Value> extra_operands;
if (has_extra_extern_values) {
auto new_extern =
extern_values.getArrayRef().drop_front(old_extern_values_size);
extra_operands.insert(new_extern.begin(), new_extern.end());
}
// Skip if already just calls.
if (extra_operands.empty() && IsAlreadyOutlinedd(while_op)) return;
// Collect new types.
SmallVector<Type, 4> types;
types.reserve(extern_values.size() +
while_op.cond().front().getNumArguments());
// Type of block arguments are used as these could differ from those of While
// op, but has to match between cond and body.
types.reserve(extra_operands.size() + while_op.getNumOperands());
for (BlockArgument ba : while_op.cond().front().getArguments())
types.push_back(ba.getType());
for (Value operand : extern_values) types.push_back(operand.getType());
@ -119,7 +152,7 @@ void WhileOutlinePass::OutlineWhile(WhileOp while_op) {
outlined_func.getBody().takeBody(region);
Region& func_region = outlined_func.getBody();
// Replace all external uses with block args and update uses..
// Replace all external uses with block args and update uses.
llvm::SmallVector<Value, 4> new_args;
new_args.reserve(extern_values.size());
Block& block = func_region.front();
@ -133,10 +166,12 @@ void WhileOutlinePass::OutlineWhile(WhileOp while_op) {
Operation* yield_op = outlined_func.getBody().front().getTerminator();
OpBuilder b(yield_op);
llvm::SmallVector<Value, 4> args;
args.reserve(yield_op->getNumOperands() + new_args.size());
auto loop_carried_yield_operands =
yield_op->getOperands().take_front(num_loop_carried);
args.reserve(loop_carried_yield_operands.size() + new_args.size());
if (passthru_extra_args) {
// Add operands of yield to the return, inserting casts if needed.
for (auto it : llvm::zip(yield_op->getOperands(), types)) {
for (auto it : llvm::zip_first(loop_carried_yield_operands, types)) {
auto value = std::get<0>(it);
auto type = std::get<1>(it);
if (value.getType() == type) {
@ -160,11 +195,6 @@ void WhileOutlinePass::OutlineWhile(WhileOp while_op) {
// Replace region with call to outline function.
auto replace_with_call = [&](StringRef name, Region& region,
bool passthru_extra_args) {
// Skip if already only a call.
if (region.front().getOperations().size() == 2 &&
isa<mlir::CallOp>(region.front().front()))
return;
auto func = create_outline_func(name, region, passthru_extra_args);
OpBuilder b(region);
// The body of the region is empty/has been outlined into the function.
@ -185,19 +215,19 @@ void WhileOutlinePass::OutlineWhile(WhileOp while_op) {
// If there are extern values used then the result type of the while has to
// change, so replace with new while op.
if (extern_values.empty()) return;
if (extra_operands.empty()) return;
Operation* op = while_op.getOperation();
SmallVector<Value, 4> operands;
SmallVector<Type, 4> new_types;
operands.reserve(op->getNumOperands() + extern_values.size());
operands.reserve(types.size());
new_types.reserve(operands.size());
auto add_operand = [&](Value v) {
operands.push_back(v);
new_types.push_back(v.getType());
};
for (auto operand : op->getOperands()) add_operand(operand);
for (auto operand : extern_values) add_operand(operand);
for (auto operand : extra_operands) add_operand(operand);
Operation* new_op = OpBuilder(op).insert(Operation::create(
op->getLoc(), op->getName(), new_types, operands, op->getAttrs(),
@ -212,7 +242,6 @@ void WhileOutlinePass::runOnModule() {
getModule().walk(
[&](mlir::TFL::WhileOp while_op) { OutlineWhile(while_op); });
}
} // namespace
// Creates an instance of the TensorFlow Lite dialect WhileOp outline pass.
std::unique_ptr<OpPassBase<ModuleOp>> CreateWhileOutlinePass() {

View File

@ -38,7 +38,7 @@ FloatAttr GetSingleElementAsFloatOrSelf(Attribute attr) {
IntegerAttr ExtractSingleElementAsInteger(ElementsAttr attr) {
if (attr.getType().getNumElements() != 1 ||
!attr.getType().getElementType().isa<IntegerType>()) {
!attr.getType().getElementType().isSignlessInteger()) {
return {};
}
SmallVector<uint64_t, 8> index(attr.getType().getRank(), 0);

View File

@ -19,7 +19,7 @@ limitations under the License.
#ifndef TENSORFLOW_COMPILER_MLIR_LITE_UTILS_ATTRIBUTE_UTILS_H_
#define TENSORFLOW_COMPILER_MLIR_LITE_UTILS_ATTRIBUTE_UTILS_H_
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
namespace mlir {
namespace TFL {

View File

@ -21,7 +21,7 @@ limitations under the License.
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project
#include "mlir/IR/Function.h" // TF:llvm-project
@ -70,14 +70,14 @@ Value CreateNoneValue(OpBuilder* builder, mlir::Location location) {
builder->getUnitAttr());
}
Value Transpose2D(OpBuilder* builder, Value value_to_transpose,
RankedTensorType type, mlir::Location location) {
Value Transpose(OpBuilder* builder, Value value_to_transpose,
SmallVector<int64_t, 4> perm, RankedTensorType original_type,
mlir::Location location) {
// Create a constant op for transpose permutation.
SmallVector<int64_t, 2> perm = {1, 0};
auto perm_op = CreateI64DenseConst(builder, perm, perm, location);
// Create tensor type for the transpose result.
auto transpose_type = type;
auto transpose_type = original_type;
auto transpose_shape = functional::map(
[transpose_type](int64_t dim) { return transpose_type.getDimSize(dim); },
perm);
@ -88,6 +88,13 @@ Value Transpose2D(OpBuilder* builder, Value value_to_transpose,
value_to_transpose, perm_op);
}
Value Transpose2D(OpBuilder* builder, Value value_to_transpose,
RankedTensorType type, mlir::Location location) {
// Create a constant op for transpose permutation.
SmallVector<int64_t, 4> perm = {1, 0};
return Transpose(builder, value_to_transpose, perm, type, location);
}
ArrayRef<int64_t> GetRankedTensorShape(Value value) {
return value.getType().cast<RankedTensorType>().getShape();
}
@ -586,15 +593,30 @@ LogicalResult ConvertKerasLSTMLayer(mlir::FuncOp func_op, OpBuilder* builder) {
Value recurrent_kernel = func_op.getArgument(4);
Value bias = func_op.getArgument(5);
// Assume it's batch majored.
// TFL lstm only supports time-majored inputs, so if it's not time-majored,
// we will transpose the inputs and outputs.
auto time_major_attr = func_op.getAttrOfType<BoolAttr>("tf.time_major");
if (time_major_attr == nullptr) return failure();
bool time_majored = time_major_attr.getValue();
auto input_type = input.getType().dyn_cast_or_null<RankedTensorType>();
if (!input_type) {
func_op.emitError() << "Input type is not a ranked tensor type";
return failure();
}
int batch = input_type.getDimSize(0);
int time = input_type.getDimSize(1);
auto final_inputs = input;
auto final_input_type = input_type;
// We will transpose the inputs.
if (!time_majored) {
SmallVector<int64_t, 4> perm = {1, 0, 2};
final_inputs =
Transpose(builder, final_inputs, perm, input_type, func_op.getLoc());
final_input_type = final_inputs.getType().dyn_cast<RankedTensorType>();
}
int batch = final_input_type.getDimSize(1);
int time = final_input_type.getDimSize(0);
// Setup correct weights.
RankedTensorType weight_type =
@ -672,7 +694,13 @@ LogicalResult ConvertKerasLSTMLayer(mlir::FuncOp func_op, OpBuilder* builder) {
builder->getF32FloatAttr(10.0), builder->getF32FloatAttr(0.0),
builder->getStringAttr("FULL"));
builder->create<mlir::ReturnOp>(func_op.getLoc(), lstm.getResult());
auto final_output = lstm.getResult();
if (!time_majored) {
SmallVector<int64_t, 4> perm = {1, 0, 2};
final_output =
Transpose(builder, final_output, perm, result_type, func_op.getLoc());
}
builder->create<mlir::ReturnOp>(func_op.getLoc(), final_output);
return success();
}

View File

@ -24,7 +24,7 @@ limitations under the License.
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project
#include "mlir/IR/Function.h" // TF:llvm-project

View File

@ -17,7 +17,7 @@ limitations under the License.
#include <vector>
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "tensorflow/compiler/mlir/lite/ir/tfl_ops.h"
namespace mlir {

View File

@ -16,7 +16,7 @@ limitations under the License.
#ifndef TENSORFLOW_COMPILER_MLIR_LITE_UTILS_STATEFUL_OPS_UTILS_H_
#define TENSORFLOW_COMPILER_MLIR_LITE_UTILS_STATEFUL_OPS_UTILS_H_
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
namespace mlir {
namespace TFL {

View File

@ -19,7 +19,7 @@ limitations under the License.
#ifndef TENSORFLOW_COMPILER_MLIR_LITE_UTILS_VALIDATORS_H_
#define TENSORFLOW_COMPILER_MLIR_LITE_UTILS_VALIDATORS_H_
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/StandardTypes.h" // TF:llvm-project
namespace mlir {

View File

@ -90,7 +90,7 @@ gentbl(
td_file = "ir/tf_saved_model_ops.td",
td_srcs = [
"@llvm-project//mlir:include/mlir/IR/OpBase.td",
"@llvm-project//mlir:include/mlir/Dialect/StandardOps/Ops.td",
"@llvm-project//mlir:include/mlir/Dialect/StandardOps/IR/Ops.td",
],
)
@ -114,7 +114,7 @@ gentbl(
td_file = "ir/tf_executor_ops.td",
td_srcs = [
"@llvm-project//mlir:include/mlir/IR/OpBase.td",
"@llvm-project//mlir:include/mlir/Dialect/StandardOps/Ops.td",
"@llvm-project//mlir:include/mlir/Dialect/StandardOps/IR/Ops.td",
],
)
@ -138,7 +138,7 @@ gentbl(
td_file = "ir/tf_device_ops.td",
td_srcs = [
"@llvm-project//mlir:include/mlir/IR/OpBase.td",
"@llvm-project//mlir:include/mlir/Dialect/StandardOps/Ops.td",
"@llvm-project//mlir:include/mlir/Dialect/StandardOps/IR/Ops.td",
],
)
@ -281,12 +281,12 @@ cc_library(
"transforms/generated_canonicalize.inc",
"transforms/generated_optimize.inc",
"transforms/graph_pruning.cc",
"transforms/inline_global_tensors.cc",
"transforms/layout_optimization.cc",
"transforms/mark_function_visibility.cc",
"transforms/materialize_mlir_passthrough_op.cc",
"transforms/optimize.cc",
"transforms/optimize_global_tensors.cc",
"transforms/parallel_execute_to_islands.cc",
"transforms/promote_resources_to_args.cc",
"transforms/raise_control_flow.cc",
"transforms/replicate_invariant_op_hoisting.cc",
@ -376,6 +376,7 @@ cc_library(
":tensorflow",
"@llvm-project//mlir:AllPassesAndDialectsNoRegistration",
"@llvm-project//mlir:IR",
"@llvm-project//mlir:LoopOpsTransforms",
],
alwayslink = 1,
)
@ -1000,8 +1001,13 @@ cc_library(
srcs = ["utils/tpu_rewrite_device_util.cc"],
hdrs = ["utils/tpu_rewrite_device_util.h"],
deps = [
"//tensorflow/compiler/xla:array3d",
"//tensorflow/compiler/xla:xla_data_proto_cc",
"//tensorflow/compiler/xla/service:computation_placer",
"//tensorflow/core:framework",
"//tensorflow/core:lib",
"//tensorflow/core/protobuf/tpu:topology_proto_cc",
"//tensorflow/stream_executor/lib",
"@com_google_absl//absl/strings",
"@llvm-project//llvm:support",
],
@ -1016,6 +1022,7 @@ tf_cc_test(
"//tensorflow/core:framework",
"//tensorflow/core:test",
"//tensorflow/core:test_main",
"//tensorflow/core/protobuf/tpu:topology_proto_cc",
"@llvm-project//llvm:support",
],
)

View File

@ -26,7 +26,7 @@ limitations under the License.
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/FormatVariadic.h"
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/Dialect/Traits.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project
@ -573,9 +573,9 @@ void Print(SwitchNOp switchn, OpAsmPrinter &p) {
ParseResult ParseSwitchNOp(OpAsmParser &parser, OperationState &result) {
// Parsing:
// %2:6 = tf_executor.SwitchN %0, %1 by 5 : tensor<??xf32>
// %2:6 = tf_executor.SwitchN %0, %1 of 5 : tensor<??xf32>
// Where the first operand is the data to replicate, the second is an i32
// indicating which output to populate, followed by the keyword `by` and the
// indicating which output to populate, followed by the keyword `of` and the
// number of outputs (+1 for the control token).
SmallVector<OpAsmParser::OperandType, 2> op_infos;
SmallVector<Type, 1> types;

View File

@ -165,7 +165,7 @@ def TfExecutor_IslandOp : TfExecutor_Op<"island",
The `tf_executor.island` operation has a single region with a single block
attached (only functional control flow is allowed). The block is terminated
by a `tf_executor.yield` operation. The operands of the terminator
correspond to the result values of the `tf_executor.graph` operation. An
correspond to the result values of the `tf_executor.island` operation. An
extra result of type `!tf_executor.control` is always produced by every
`tf_executor.island`.
Within an island, execution semantics follow standard sequential behavior as
@ -299,7 +299,7 @@ def TfExecutor_SwitchNOp : TfExecutor_Op<"SwitchN",
.SetShapeFn(SwitchNShape);
For example:
%2:6 = tf_executor.SwitchN %0, %1 by 5 : tensor<??xf32>
%2:6 = tf_executor.SwitchN %0, %1 of 5 : tensor<??xf32>
Note: One additional result corresponds to the control output.
}];

View File

@ -510,6 +510,7 @@ Broadcasting is supported, so `value` may have any number of dimensions.
// TF_LayoutSensitiveInterface:
SmallVector<unsigned, 4> GetLayoutDependentArgs() { return {0}; }
SmallVector<unsigned, 4> GetLayoutDependentResults() { return {0}; }
LogicalResult UpdateDataFormat(StringRef data_format);
}];
}
@ -980,7 +981,7 @@ tf.conj(input) ==> [-2.25 - 4.75j, 3.25 - 5.75j]
let hasCanonicalizer = 1;
}
def TF_Conv2DOp : TF_Op<"Conv2D", [NoSideEffect]> {
def TF_Conv2DOp : TF_Op<"Conv2D", [NoSideEffect, TF_LayoutSensitiveInterface]> {
let summary = [{
Computes a 2-D convolution given 4-D `input` and `filter` tensors.
}];
@ -1030,6 +1031,13 @@ horizontal and vertices strides, `strides = [1, stride, stride, 1]`.
let verifier = [{
return Verify(*this);
}];
let extraClassDeclaration = [{
// TF_LayoutSensitiveInterface:
SmallVector<unsigned, 4> GetLayoutDependentArgs() { return {0}; }
SmallVector<unsigned, 4> GetLayoutDependentResults() { return {0}; }
LogicalResult UpdateDataFormat(StringRef data_format);
}];
}
def TF_Conv2DBackpropFilterOp : TF_Op<"Conv2DBackpropFilter", [NoSideEffect]> {
@ -2091,7 +2099,7 @@ The size of 1D Tensors matches the dimension C of the 4D Tensors.
TF_DerivedOperandTypeAttr U = TF_DerivedOperandTypeAttr<3>;
}
def TF_FusedBatchNormV3Op : TF_Op<"FusedBatchNormV3", [NoSideEffect]> {
def TF_FusedBatchNormV3Op : TF_Op<"FusedBatchNormV3", [NoSideEffect, TF_FoldOperandsTransposeInterface]> {
let summary = "Batch normalization.";
let description = [{
@ -2122,6 +2130,13 @@ The size of 1D Tensors matches the dimension C of the 4D Tensors.
TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>;
TF_DerivedOperandTypeAttr U = TF_DerivedOperandTypeAttr<1>;
let extraClassDeclaration = [{
// TF_FoldOperandsTransposeInterface:
SmallVector<unsigned, 4> GetLayoutDependentArgs() { return {0}; }
SmallVector<unsigned, 4> GetLayoutDependentResults() { return {0}; }
LogicalResult FoldOperandsPermutation(ArrayRef<int64_t> permutation);
}];
}
def TF_GatherOp : TF_Op<"Gather", [NoSideEffect]> {
@ -3096,6 +3111,70 @@ cublas.
TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>;
}
def TF_MatrixBandPartOp : TF_Op<"MatrixBandPart", [NoSideEffect, AllTypesMatch<["input", "band"]>]> {
let summary = [{
Copy a tensor setting everything outside a central band in each innermost matrix
to zero.
}];
let description = [{
The `band` part is computed as follows:
Assume `input` has `k` dimensions `[I, J, K, ..., M, N]`, then the output is a
tensor with the same shape where
`band[i, j, k, ..., m, n] = in_band(m, n) * input[i, j, k, ..., m, n]`.
The indicator function
`in_band(m, n) = (num_lower < 0 || (m-n) <= num_lower)) &&
(num_upper < 0 || (n-m) <= num_upper)`.
For example:
```
# if 'input' is [[ 0, 1, 2, 3]
[-1, 0, 1, 2]
[-2, -1, 0, 1]
[-3, -2, -1, 0]],
tf.matrix_band_part(input, 1, -1) ==> [[ 0, 1, 2, 3]
[-1, 0, 1, 2]
[ 0, -1, 0, 1]
[ 0, 0, -1, 0]],
tf.matrix_band_part(input, 2, 1) ==> [[ 0, 1, 0, 0]
[-1, 0, 1, 0]
[-2, -1, 0, 1]
[ 0, -2, -1, 0]]
```
Useful special cases:
```
tf.matrix_band_part(input, 0, -1) ==> Upper triangular part.
tf.matrix_band_part(input, -1, 0) ==> Lower triangular part.
tf.matrix_band_part(input, 0, 0) ==> Diagonal.
```
}];
let arguments = (ins
TF_Tensor:$input,
TF_I32OrI64Tensor:$num_lower,
TF_I32OrI64Tensor:$num_upper
);
let results = (outs
TF_Tensor:$band
);
TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>;
TF_DerivedOperandTypeAttr Tindex = TF_DerivedOperandTypeAttr<1>;
let verifier = [{
return Verify(*this);
}];
}
def TF_MatrixDiagOp : TF_Op<"MatrixDiag", [NoSideEffect]> {
let summary = [{
Returns a batched diagonal tensor with a given batched diagonal values.
@ -4278,7 +4357,7 @@ This is the opposite of `unpack`.
}];
}
def TF_PadOp : TF_Op<"Pad", [NoSideEffect]> {
def TF_PadOp : TF_Op<"Pad", [NoSideEffect, TF_FoldOperandsTransposeInterface]> {
let summary = "Pads a tensor with zeros.";
let description = [{
@ -4317,6 +4396,13 @@ pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0]
TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>;
TF_DerivedOperandTypeAttr Tpaddings = TF_DerivedOperandTypeAttr<1>;
let extraClassDeclaration = [{
// TF_FoldOperandsTransposeInterface:
SmallVector<unsigned, 4> GetLayoutDependentArgs() { return {0}; }
SmallVector<unsigned, 4> GetLayoutDependentResults() { return {0}; }
LogicalResult FoldOperandsPermutation(ArrayRef<int64_t> permutation);
}];
}
def TF_PadV2Op : TF_Op<"PadV2", [NoSideEffect]> {
@ -4845,7 +4931,7 @@ I.e., \\(y = 1 / x\\).
let hasCanonicalizer = 1;
}
def TF_ReluOp : TF_Op<"Relu", [NoSideEffect, SameOperandsAndResultType]> {
def TF_ReluOp : TF_Op<"Relu", [NoSideEffect, SameOperandsAndResultType, TF_LayoutAgnostic]> {
let summary = "Computes rectified linear: `max(features, 0)`.";
let description = [{

View File

@ -85,7 +85,7 @@ class TF_TensorFlowType <string name, string description> :
// Any tensor element type allowed in TensorFlow ops
def TF_ElementType : Type<Or<[AnyFloat.predicate,
AnyInteger.predicate,
AnySignlessInteger.predicate,
AnyComplex.predicate,
TF_TFDialectType.predicate]>,
"tf.dtype">;

View File

@ -50,6 +50,12 @@ def TF_LayoutSensitiveInterface : OpInterface<"LayoutSensitiveInterface"> {
[{Returns indices of layout dependent results.}],
"SmallVector<unsigned, 4>", "GetLayoutDependentResults", (ins)
>,
InterfaceMethod<
[{Updates operation attributes and operands to account for the updated
data format. If data format is not supported, must return failure.}],
"LogicalResult", "UpdateDataFormat",
(ins "StringRef":$data_format)
>,
];
let verify = [{

View File

@ -35,7 +35,7 @@ limitations under the License.
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/FormatVariadic.h"
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/Dialect/Traits.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project
@ -151,26 +151,6 @@ static bool AreCastCompatible(Type a, Type b) {
b_kind == TensorFlowTypes::VARIANT;
}
static bool AreCancellablePermutations(DenseIntElementsAttr perm0,
DenseIntElementsAttr perm1) {
if (perm0.getNumElements() == 0 || perm1.getNumElements() == 0) return false;
if (perm0.getNumElements() != perm1.getNumElements()) return false;
SmallVector<int64_t, 8> perm0_values;
for (auto value : perm0.getIntValues())
perm0_values.push_back(value.getSExtValue());
SmallVector<int64_t, 8> perm1_values;
for (auto value : perm1.getIntValues())
perm1_values.push_back(value.getSExtValue());
for (int i = 0; i < perm0_values.size(); ++i) {
if (perm0_values[perm1_values[i]] != i) return false;
}
return true;
}
static bool IsUnknownDimOrRank(int64_t dim_or_rank) {
return dim_or_rank == -1;
}
@ -312,6 +292,164 @@ static LogicalResult VerifyTypesCompatibility(
return success();
}
//===----------------------------------------------------------------------===//
// TF op helper functions to work with layout transformation.
//===----------------------------------------------------------------------===//
SmallVector<int64_t, 4> ReversePermutation(ArrayRef<int64_t> permutation) {
SmallVector<int64_t, 4> reverse(permutation.size());
for (size_t i = 0; i < permutation.size(); ++i) {
reverse[permutation[i]] = i;
}
return reverse;
}
SmallVector<int64_t, 4> GetDataFormatPermutation(StringRef from, StringRef to) {
if (from == "NHWC" && to == "NCHW") {
return {0, 3, 1, 2};
} else if (from == "NCHW" && to == "NHWC") {
return {0, 2, 3, 1};
} else {
return {};
}
}
// Shuffle elements in the `attr` according to the permutation. Optional
// `inner_size` allows to shuffle array attributes created from rank 2 tensors
// on outer dimension only.
ArrayAttr ShuffleArrayAttr(ArrayAttr attr, ArrayRef<int64_t> permutation,
int inner_size = 1) {
if (attr.size() == 0) return attr;
assert(attr.size() % inner_size == 0);
assert(attr.size() / inner_size == permutation.size());
SmallVector<Attribute, 8> values{attr.begin(), attr.end()};
SmallVector<Attribute, 8> shuffled(values.size());
for (size_t i = 0; i < permutation.size(); ++i) {
for (size_t j = 0; j < inner_size; ++j) {
shuffled[i * inner_size + j] = values[permutation[i] * inner_size + j];
}
}
return ArrayAttr::get(shuffled, attr.getContext());
}
// Shuffle ranked tensor dimensions according to the permutation.
Type ShuffleRankedTensorType(Type type, ArrayRef<int64_t> permutation) {
if (auto ranked_type = type.dyn_cast<RankedTensorType>()) {
ArrayRef<int64_t> shape = ranked_type.getShape();
assert(permutation.size() == shape.size());
SmallVector<int64_t, 4> new_shape(permutation.size());
for (size_t i = 0; i < permutation.size(); ++i)
new_shape[i] = shape[permutation[i]];
return RankedTensorType::get(new_shape, ranked_type.getElementType());
}
return type;
}
static bool AreCancellablePermutations(DenseIntElementsAttr perm0,
DenseIntElementsAttr perm1) {
if (perm0.getNumElements() == 0 || perm1.getNumElements() == 0) return false;
if (perm0.getNumElements() != perm1.getNumElements()) return false;
SmallVector<int64_t, 8> perm0_values;
for (auto value : perm0.getIntValues())
perm0_values.push_back(value.getSExtValue());
SmallVector<int64_t, 8> perm1_values;
for (auto value : perm1.getIntValues())
perm1_values.push_back(value.getSExtValue());
for (int i = 0; i < perm0_values.size(); ++i) {
if (perm0_values[perm1_values[i]] != i) return false;
}
return true;
}
// Default implementation of `LayoutSensitiveInterface::UpdateDataFormat` for
// layout sensitive operations that do not have any additional layout dependent
// attributes besides `data_format` string.
template <typename Op>
LogicalResult UpdateDataFormat(StringRef data_format, Op *op) {
auto perm = GetDataFormatPermutation(op->data_format(), data_format);
if (perm.empty()) return failure();
// Update data format attribute.
op->setAttr("data_format", StringAttr::get(data_format, op->getContext()));
// Update types for all layout sensitive results.
auto layout_sensitive = cast<LayoutSensitiveInterface>(op->getOperation());
for (unsigned idx : layout_sensitive.GetLayoutDependentResults()) {
OpResult result = op->getOperation()->getResult(idx);
result.setType(ShuffleRankedTensorType(result.getType(), perm));
}
return success();
}
// Default implementation for folding operand transpose into the operation.
// See `FoldOperandsTransposeInterface::FoldOperandsPermutation`.
template <typename Op>
LogicalResult FoldOperandsPermutation(
ArrayRef<int64_t> permutation, Op *op,
ArrayRef<std::pair<StringRef, ArrayAttr>> shuffle_attrs = {}) {
MLIRContext *context = op->template getParentOfType<ModuleOp>().getContext();
// We only support NHWC <-> NCHW permutations.
static constexpr std::array<int64_t, 4> kNchwToNhwc = {0, 2, 3, 1};
static constexpr std::array<int64_t, 4> kNhwcToNchw = {0, 3, 1, 2};
// Operation data format after folding `permutation`.
StringRef target_data_format = [&]() -> StringRef {
if (op->data_format() == "NHWC" && permutation.equals(kNchwToNhwc)) {
return "NCHW"; // cancel NCHW->NHWC operand permutation
} else if (op->data_format() == "NCHW" && permutation.equals(kNhwcToNchw)) {
return "NHWC"; // cancel NHWC->NCHW operand permutation
} else {
return "";
}
}();
if (target_data_format.empty()) return failure();
// To fold operand `permutation` into the `op` we need shuffle all layout
// dependent attributes and types with a reverse permutation, and change
// operation data format to `target_data_format`.
//
// Example:
// %1 = SomeOp(...) {data_format = NHWC}
// %2 = Transpose(%1) {permutation = NHWC->NCHW}
// %3 = Op(%2) {data_format = NCHW}
//
// To bypass %2 we have to change data format to shuffle data format from NCHW
// to NHWC, which is the reverse of operand permutation (function argument).
auto reverse_permutation =
GetDataFormatPermutation(op->data_format(), target_data_format);
if (reverse_permutation.empty()) return failure();
op->setAttr("data_format", StringAttr::get(target_data_format, context));
for (auto pair : shuffle_attrs) {
StringRef attr_name = pair.first;
ArrayAttr attr_value = pair.second;
op->setAttr(attr_name, ShuffleArrayAttr(attr_value, reverse_permutation));
}
auto fold = cast<FoldOperandsTransposeInterface>(op->getOperation());
for (unsigned idx : fold.GetLayoutDependentResults()) {
OpResult result = op->getOperation()->getResult(idx);
result.setType(
ShuffleRankedTensorType(result.getType(), reverse_permutation));
}
return success();
}
namespace {
#include "tensorflow/compiler/mlir/tensorflow/transforms/generated_canonicalize.inc"
} // namespace
@ -479,6 +617,15 @@ static LogicalResult Verify(BiasAddOp op) {
return success();
}
// TODO(ezhulenev): BiasAddOp is not really layout sensitive, it must only
// support folding operand transposes.
LogicalResult BiasAddOp::UpdateDataFormat(StringRef data_format) {
auto ranked = value().getType().dyn_cast<RankedTensorType>();
if (!ranked || ranked.getRank() != 4) return failure();
return ::mlir::TF::UpdateDataFormat(data_format, this);
}
//===----------------------------------------------------------------------===//
// BiasAddGradOp
//===----------------------------------------------------------------------===//
@ -837,6 +984,21 @@ static LogicalResult Verify(OpT op) {
return success();
}
LogicalResult Conv2DOp::UpdateDataFormat(StringRef data_format) {
auto perm = GetDataFormatPermutation(this->data_format(), data_format);
if (perm.empty()) return failure();
// Update data_format attribute and result types.
if (failed(::mlir::TF::UpdateDataFormat(data_format, this))) return failure();
// Update convolution attributes.
setAttr("dilations", ShuffleArrayAttr(dilations(), perm));
setAttr("strides", ShuffleArrayAttr(strides(), perm));
setAttr("explicit_paddings", ShuffleArrayAttr(explicit_paddings(), perm, 2));
return success();
}
//===----------------------------------------------------------------------===//
// Conv2dBackpropInputOp
//===----------------------------------------------------------------------===//
@ -1158,6 +1320,11 @@ static LogicalResult Verify(FusedBatchNormOp op) {
return success();
}
LogicalResult FusedBatchNormV3Op::FoldOperandsPermutation(
ArrayRef<int64_t> permutation) {
return ::mlir::TF::FoldOperandsPermutation(permutation, this);
}
//===----------------------------------------------------------------------===//
// GatherV2Op
//===----------------------------------------------------------------------===//
@ -1339,6 +1506,29 @@ void LogicalNotOp::getCanonicalizationPatterns(
LogicalNotOfLess, LogicalNotOfLessEqual>(context);
}
//===----------------------------------------------------------------------===//
// MatrixBandPartOp
//===----------------------------------------------------------------------===//
static LogicalResult Verify(MatrixBandPartOp op) {
if (!HasRankAtLeast(op.input(), 2)) {
return op.emitOpError()
<< "requires `input` to have rank of at least 2, but found "
<< op.input().getType();
}
if (!IsOfRankOrUnranked(op.num_lower(), 0)) {
return op.emitOpError()
<< "requires `num_lower` to have 0 dimensions, but found "
<< op.num_lower().getType();
}
if (!IsOfRankOrUnranked(op.num_upper(), 0)) {
return op.emitOpError()
<< "requires `num_upper` to have 0 dimensions, but found "
<< op.num_upper().getType();
}
return success();
}
//===----------------------------------------------------------------------===//
// MaxOp
//===----------------------------------------------------------------------===//
@ -1356,57 +1546,8 @@ void MaxOp::build(Builder *builder, OperationState &result, Value input,
LogicalResult MaxPoolOp::FoldOperandsPermutation(
ArrayRef<int64_t> permutation) {
MLIRContext *context = getParentOfType<ModuleOp>().getContext();
// For now we only support folding of NCHW->NHWC and NHWC->NCHW permutations.
if (data_format() == "NHWC") {
static constexpr std::array<int64_t, 4> kPerm = {0, 2, 3, 1}; // to NHWC
if (permutation != ArrayRef<int64_t>(kPerm)) return failure();
setAttr("data_format", StringAttr::get("NCHW", context));
} else if (data_format() == "NCHW") {
static constexpr std::array<int64_t, 4> kPerm = {0, 3, 1, 2}; // to NCHW
if (permutation != ArrayRef<int64_t>(kPerm)) return failure();
setAttr("data_format", StringAttr::get("NHWC", context));
} else {
return failure();
}
auto shuffle_attr = [&](ArrayAttr attr) -> ArrayAttr {
SmallVector<Attribute, 4> values{attr.begin(), attr.end()};
SmallVector<Attribute, 4> shuffled(values.size());
for (size_t i = 0; i < permutation.size(); ++i)
shuffled[permutation[i]] = values[i];
return ArrayAttr::get(shuffled, context);
};
setAttr("strides", shuffle_attr(strides()));
setAttr("ksize", shuffle_attr(ksize()));
auto shuffle_type = [&](Type type) -> Type {
if (auto ranked_type = type.dyn_cast<RankedTensorType>()) {
ArrayRef<int64_t> shape = ranked_type.getShape();
assert(permutation.size() == shape.size());
SmallVector<int64_t, 4> new_shape(permutation.size());
for (size_t i = 0; i < permutation.size(); ++i)
new_shape[permutation[i]] = shape[i];
return RankedTensorType::get(new_shape, ranked_type.getElementType());
}
return type;
};
OpResult result = getOperation()->getResult(0);
result.setType(shuffle_type(result.getType()));
return success();
return ::mlir::TF::FoldOperandsPermutation(
permutation, this, {{"strides", strides()}, {"ksize", ksize()}});
}
//===----------------------------------------------------------------------===//
@ -1426,6 +1567,38 @@ static LogicalResult Verify(MaxPoolGradOp op) {
return success();
}
//===----------------------------------------------------------------------===//
// MeanOp
//===----------------------------------------------------------------------===//
LogicalResult MeanOp::FoldOperandsPermutation(ArrayRef<int64_t> permutation) {
// Reduction indices must be defined by a constant operation.
auto reduction_op =
dyn_cast_or_null<TF::ConstOp>(reduction_indices().getDefiningOp());
if (!reduction_op) return failure();
auto reductions_value = reduction_op.value().dyn_cast<DenseElementsAttr>();
if (!reductions_value) return failure();
// Prepare new reduction indices according to operand permutation.
SmallVector<int32_t, 4> shuffled_reduction;
llvm::transform(reductions_value.getIntValues(),
std::back_inserter(shuffled_reduction),
[&](APInt idx) { return permutation[idx.getSExtValue()]; });
// Add constant operation with a new reduction indices.
OpBuilder builder(getOperation());
auto type = mlir::RankedTensorType::get(shuffled_reduction.size(),
builder.getIntegerType(32));
auto values = mlir::DenseIntElementsAttr::get(type, shuffled_reduction);
auto shuffled_reduction_op = builder.create<TF::ConstOp>(getLoc(), values);
// Use new reduction indices.
setOperand(1, shuffled_reduction_op);
return success();
}
//===----------------------------------------------------------------------===//
// NegOp
//===----------------------------------------------------------------------===//
@ -1568,6 +1741,46 @@ static LogicalResult Verify(PackOp op) {
return success();
}
//===----------------------------------------------------------------------===//
// PadOp
//===----------------------------------------------------------------------===//
LogicalResult PadOp::FoldOperandsPermutation(ArrayRef<int64_t> permutation) {
// Paddings must be defined by a constant operation.
auto paddings_op = dyn_cast_or_null<TF::ConstOp>(paddings().getDefiningOp());
if (!paddings_op) return failure();
auto paddings_value = paddings_op.value().dyn_cast<DenseElementsAttr>();
if (!paddings_value ||
paddings_value.getNumElements() != permutation.size() * 2)
return failure();
SmallVector<int32_t, 8> shuffled_paddings(paddings_value.getNumElements());
for (auto index_pair : llvm::enumerate(paddings_value.getIntValues())) {
size_t outer_idx = index_pair.index() / 2;
size_t inner_idx = index_pair.index() % 2;
shuffled_paddings[permutation[outer_idx] * 2 + inner_idx] =
index_pair.value().getSExtValue();
}
// Add constant operation with a new paddings.
OpBuilder builder(getOperation());
auto type = mlir::RankedTensorType::get(paddings_value.getType().getShape(),
builder.getIntegerType(32));
auto values = mlir::DenseIntElementsAttr::get(type, shuffled_paddings);
auto shuffled_paddings_op = builder.create<TF::ConstOp>(getLoc(), values);
// Use new paddings.
setOperand(1, shuffled_paddings_op);
// Change the result type.
getResult().setType(ShuffleRankedTensorType(getResult().getType(),
ReversePermutation(permutation)));
return success();
}
//===----------------------------------------------------------------------===//
// ParseExampleV2Op
//===----------------------------------------------------------------------===//
@ -1914,7 +2127,8 @@ LogicalResult VerifyShapeOperandAndResult(Operation *op, Type operand_type,
}
Type element_type = result_ranked_type.getElementType();
if (!element_type.isInteger(32) && !element_type.isInteger(64))
if (!element_type.isSignlessInteger(32) &&
!element_type.isSignlessInteger(64))
return op->emitOpError("requires int32 or int64 return type for result")
<< variadic_idx_str;

View File

@ -172,7 +172,7 @@ else_branch: A function that takes 'inputs' and returns a list of
}];
}
def TF_MeanOp : TF_Op<"Mean", [NoSideEffect]> {
def TF_MeanOp : TF_Op<"Mean", [NoSideEffect, TF_FoldOperandsTransposeInterface]> {
let summary = "Computes the mean of elements across dimensions of a tensor.";
let description = [{
@ -195,6 +195,13 @@ retained with length 1.
TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>;
TF_DerivedOperandTypeAttr Tidx = TF_DerivedOperandTypeAttr<1>;
let extraClassDeclaration = [{
// TF_FoldOperandsTransposeInterface:
SmallVector<unsigned, 4> GetLayoutDependentArgs() { return {0}; }
SmallVector<unsigned, 4> GetLayoutDependentResults() { return {}; }
LogicalResult FoldOperandsPermutation(ArrayRef<int64_t> permutation);
}];
}
def TF_LegacyCallOp : TF_Op<"LegacyCall",

View File

@ -112,24 +112,20 @@ static LogicalResult VerifyIndexPath(Operation *op, NamedAttribute named_attr) {
return mlir::success();
}
Type GetBoundInputArgTypeFor(GlobalTensorOp global_tensor) {
auto type = global_tensor.type().cast<TensorType>();
return RankedTensorType::get(
{}, TF::ResourceType::get({type}, type.getContext()));
}
static LogicalResult VerifyBoundInputArgType(Operation *op_for_diagnostics,
Type arg_type,
GlobalTensorOp global_tensor) {
if (global_tensor.is_mutable()) {
auto expected_type = RankedTensorType::get(
{}, TF::ResourceType::get({global_tensor.type().cast<TensorType>()},
arg_type.getContext()));
if (arg_type != expected_type) {
return op_for_diagnostics->emitError()
<< "mutable bound input with type " << arg_type
<< " expected to have type " << expected_type;
}
} else {
if (arg_type != global_tensor.type()) {
return op_for_diagnostics->emitError()
<< "bound input for immutable 'tf_saved_model.global_tensor' must "
"match the global tensor's type";
}
auto expected_type = GetBoundInputArgTypeFor(global_tensor);
if (arg_type != expected_type) {
return op_for_diagnostics->emitError()
<< "bound input with type " << arg_type << " expected to have type "
<< expected_type;
}
return success();
}

View File

@ -57,6 +57,10 @@ bool HasTfSavedModelSemantics(ModuleOp module);
GlobalTensorOp LookupBoundInput(FuncOp func, int arg_index,
const SymbolTable &symbol_table);
// Gets the type that an exported function arg that is bound to `global_tensor`
// should have.
Type GetBoundInputArgTypeFor(GlobalTensorOp global_tensor);
} // namespace tf_saved_model
} // namespace mlir

View File

@ -91,7 +91,7 @@ class TensorFlowType : public Type {
// Returns true if the specified type is a valid TensorFlow element type.
static inline bool IsValidTFElementType(Type type) {
return type.isa<ComplexType>() || type.isa<FloatType>() ||
type.isa<IntegerType>() || type.isa<TensorFlowType>();
type.isSignlessInteger() || type.isa<TensorFlowType>();
}
// Returns true if this is a valid TensorFlow tensor type.
@ -141,20 +141,16 @@ class TensorFlowRefType : public TensorFlowType {
static TensorFlowType get(Type type);
static TensorFlowType getChecked(Type type, MLIRContext* context,
Location loc) {
if (failed(verifyConstructionInvariants(loc, context, type))) {
if (failed(verifyConstructionInvariants(loc, type))) {
return TensorFlowRefType();
}
return get(type);
}
static LogicalResult verifyConstructionInvariants(
llvm::Optional<Location> loc, MLIRContext* context, Type type) {
static LogicalResult verifyConstructionInvariants(Location loc, Type type) {
// type should be a valid TensorFlow type.
if (!IsValidTFTensorType(type)) {
if (loc) {
emitError(*loc) << "invalid TensorFlow type: " << type;
}
return failure();
return emitError(loc) << "invalid TensorFlow type: " << type;
}
return success();
}
@ -230,7 +226,7 @@ class TypeWithSubtypeImpl
static Derived getChecked(ArrayRef<TensorType> subtypes, MLIRContext* context,
Location loc) {
return Base::getChecked(loc, context, Derived::getTypeKind(), subtypes);
return Base::getChecked(loc, Derived::getTypeKind(), subtypes);
}
static Derived get(MLIRContext* context) { return get({}, context); }
@ -239,16 +235,12 @@ class TypeWithSubtypeImpl
static bool kindof(unsigned kind) { return kind == Derived::getTypeKind(); }
static LogicalResult verifyConstructionInvariants(
llvm::Optional<Location> loc, MLIRContext* context,
ArrayRef<TensorType> subtypes) {
Location loc, ArrayRef<TensorType> subtypes) {
// Each of the subtypes should be a valid TensorFlow type.
for (TensorType subtype : subtypes) {
if (!IsValidTFTensorType(subtype)) {
if (loc) {
emitError(*loc) << "invalid " << Derived::getTypeName()
<< " subtype: " << subtype;
}
return failure();
return emitError(loc) << "invalid " << Derived::getTypeName()
<< " subtype: " << subtype;
}
}
return success();

View File

@ -280,3 +280,67 @@ func @empty_island_multiple_data_results(%arg0: tensor<*xf32>, %arg1: tensor<*xi
}
return
}
// The following tests check that certain control dependencies between islands
// and certain tf_executor ops are added correctly.
// CHECK: %[[CONTROL:[^ ,]*]] = tf_executor.island wraps "tf.Print"
// CHECK: tf_executor.NextIteration.Sink [{{.*}}] {{.*}}, %[[CONTROL]]
func @next_iteration_sink_control_input() {
tf_executor.graph {
%source:3 = tf_executor.NextIteration.Source : tensor<*xi32>
%island:2 = tf_executor.island {
%const = "tf.Const"() {value = dense<1> : tensor<i32>} : () -> tensor<*xi32>
%print = "tf.Print"(%const) : (tensor<*xi32>) -> (tensor<*xi32>)
tf_executor.yield %const : tensor<*xi32>
}
tf_executor.NextIteration.Sink[%source#1] %island#0 : tensor<*xi32>
tf_executor.fetch %island#0 : tensor<*xi32>
}
return
}
// CHECK: %[[CONTROL:[^ ,]*]] = tf_executor.island wraps "tf.Print"
// CHECK: tf_executor.LoopCond {{.*}}, %[[CONTROL]]
func @loop_cond_control_input() {
tf_executor.graph {
%island:2 = tf_executor.island {
%const = "tf.Const"() {value = dense<1> : tensor<i1>} : () -> tensor<*xi1>
%print = "tf.Print"(%const) : (tensor<*xi1>) -> (tensor<*xi1>)
tf_executor.yield %const : tensor<*xi1>
}
%loop_cond:2 = tf_executor.LoopCond %island#0 : tensor<*xi1>
tf_executor.fetch %loop_cond#0 : tensor<*xi1>
}
return
}
// CHECK: %[[CONTROL:[^ ,]*]] = tf_executor.island wraps "tf.Print"
// CHECK: tf_executor.Enter {{.*}}, %[[CONTROL]]
func @enter_control_input() {
tf_executor.graph {
%island:2 = tf_executor.island {
%const = "tf.Const"() {value = dense<1> : tensor<i32>} : () -> tensor<*xi32>
%print = "tf.Print"(%const) : (tensor<*xi32>) -> (tensor<*xi32>)
tf_executor.yield %const : tensor<*xi32>
}
%enter:2 = tf_executor.Enter %island#0 frame "some/frame" : tensor<*xi32>
tf_executor.fetch %enter#0 : tensor<*xi32>
}
return
}
// CHECK: %[[CONTROL:[^ ,]*]] = tf_executor.island wraps "tf.Print"
// CHECK: tf_executor.SwitchN {{.*}}, {{.*}} of {{[0-9]*}} (%[[CONTROL]])
func @switchn_control_input(%arg1: tensor<i32>) {
tf_executor.graph {
%island:2 = tf_executor.island {
%const = "tf.Const"() {value = dense<1> : tensor<i32>} : () -> tensor<*xi32>
%print = "tf.Print"(%const) : (tensor<*xi32>) -> (tensor<*xi32>)
tf_executor.yield %const : tensor<*xi32>
}
%switchn:4 = tf_executor.SwitchN %island#0, %arg1 of 3: tensor<*xi32>
tf_executor.fetch %switchn#0 : tensor<*xi32>
}
return
}

View File

@ -9,5 +9,7 @@ func @device_test(%arg0: tensor<3x1xf32>) -> (tensor<3x3xf32>) {
%1 = "tf.MatMul"(%arg0, %0) {T = f32, _output_shapes = ["tfshape$dim { size: 3 } dim { size: 3 }"], device = "", transpose_a = false, transpose_b = false} : (tensor<3x1xf32>, tensor<1x3xf32>) -> tensor<3x3xf32>
// CHECK: device = "cpu"
%2 = "tf.Relu"(%1) {T = f32, _output_shapes = ["tfshape$dim { size: 3 } dim { size: 3 }"], device = "cpu"} : (tensor<3x3xf32>) -> tensor<3x3xf32>
return %2 : tensor<3x3xf32>
// CHECK: device = "gpu"
%3 = "tf.Relu"(%2) {T = f32, _output_shapes = ["tfshape$dim { size: 3 } dim { size: 3 }"]} : (tensor<3x3xf32>) -> tensor<3x3xf32>
return %3 : tensor<3x3xf32>
}

View File

@ -6,10 +6,10 @@ func @transposeBiasAdd(%arg0: tensor<1x4x4x8xf32>, %arg1: tensor<8xf32>) -> tens
// Check that BiasAdd was converted to forced data format, and layout
// dependent arguments and results passed through transpose nodes.
// CHECK: %[[ARG_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>}
// CHECK: %[[ARG_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>}
// CHECK: %[[ARG_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%arg0, %[[ARG_PERM]])
// CHECK: %[[BIAS_ADD:[0-9]*]] = "tf.BiasAdd"(%[[ARG_TRANSPOSE]], %arg1) {data_format = "NCHW"} {{.*}} tensor<1x8x4x4xf32>
// CHECK: %[[RES_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 2, 3, 1]> : tensor<4xi64>}
// CHECK: %[[RES_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 2, 3, 1]> : tensor<4xi32>}
// CHECK: %[[RES_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%[[BIAS_ADD]], %[[RES_PERM]])
// CHECK: return %[[RES_TRANSPOSE]]
%0 = "tf.BiasAdd"(%arg0, %arg1) {data_format = "NHWC"} : (tensor<1x4x4x8xf32>, tensor<8xf32>) -> tensor<1x4x4x8xf32>
@ -20,10 +20,10 @@ func @transposeBiasAdd(%arg0: tensor<1x4x4x8xf32>, %arg1: tensor<8xf32>) -> tens
// CHECK-LABEL: func @transposeBiasAddWithDefaultAttr
func @transposeBiasAddWithDefaultAttr(%arg0: tensor<1x4x4x8xf32>, %arg1: tensor<8xf32>) -> tensor<1x4x4x8xf32> {
// CHECK: %[[ARG_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>}
// CHECK: %[[ARG_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>}
// CHECK: %[[ARG_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%arg0, %[[ARG_PERM]])
// CHECK: %[[BIAS_ADD:[0-9]*]] = "tf.BiasAdd"(%[[ARG_TRANSPOSE]], %arg1) {data_format = "NCHW"} {{.*}} tensor<1x8x4x4xf32>
// CHECK: %[[RES_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 2, 3, 1]> : tensor<4xi64>}
// CHECK: %[[RES_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 2, 3, 1]> : tensor<4xi32>}
// CHECK: %[[RES_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%[[BIAS_ADD]], %[[RES_PERM]])
// CHECK: return %[[RES_TRANSPOSE]]
%0 = "tf.BiasAdd"(%arg0, %arg1) : (tensor<1x4x4x8xf32>, tensor<8xf32>) -> tensor<1x4x4x8xf32>
@ -38,4 +38,38 @@ func @transposeBiasWithUnknownShape(%arg0: tensor<1x4x4x8xf32>, %arg1: tensor<8x
%0 = "tf.BiasAdd"(%arg0, %arg1) : (tensor<1x4x4x8xf32>, tensor<8xf32>) -> tensor<*xf32>
return %0 : tensor<*xf32>
}
}
// CHECK-LABEL: func @transposeConv2D
func @transposeConv2D(%input: tensor<1x32x32x3xf32>, %filter: tensor<1x1x3x8xf32>) -> tensor<1x32x32x8xf32> {
// IMPORTANT: Tensor shapes do not match convolution parameters (stride,
// dilations, etc...). This test only verifies that changing convolution data
// layout will update all the attributes.
// CHECK: %[[ARG_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>}
// CHECK: %[[ARG_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%arg0, %[[ARG_PERM]])
// CHECK: %[[CONV2D:[0-9]*]] = "tf.Conv2D"(%[[ARG_TRANSPOSE]], %arg1)
// CHECK-SAME: data_format = "NCHW"
// CHECK-SAME: dilations = [1, 4, 2, 3]
// CHECK-SAME: explicit_paddings = [1, 2, 7, 8, 3, 4, 5, 6]
// CHECK-SAME: padding = "EXPLICIT"
// CHECK-SAME: strides = [5, 8, 6, 7]
// CHECK-SAME: (tensor<1x3x32x32xf32>, tensor<1x1x3x8xf32>) -> tensor<1x8x32x32xf32>
// CHECK: %[[RES_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 2, 3, 1]> : tensor<4xi32>}
// CHECK: %[[RES_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%[[CONV2D]], %[[RES_PERM]])
// CHECK: return %[[RES_TRANSPOSE]]
%0 = "tf.Conv2D"(%input, %filter)
{
data_format = "NHWC",
dilations = [1, 2, 3, 4],
explicit_paddings = [1, 2, 3, 4, 5, 6, 7, 8],
padding = "EXPLICIT",
strides = [5, 6, 7, 8]
} : (tensor<1x32x32x3xf32>, tensor<1x1x3x8xf32>) -> tensor<1x32x32x8xf32>
return %0 : tensor<1x32x32x8xf32>
}

View File

@ -0,0 +1,35 @@
// RUN: tf-opt %s -tf-layout-assignment=force-data-format=NHWC -verify-diagnostics | FileCheck %s --dump-input=always
// CHECK-LABEL: func @transposeConv2D
func @transposeConv2D(%input: tensor<1x3x32x32xf32>, %filter: tensor<1x1x3x8xf32>) -> tensor<1x8x32x32xf32> {
// IMPORTANT: Tensor shapes do not match convolution parameters (stride,
// dilations, etc...). This test only verifies that changing convolution data
// layout will update all the attributes.
// CHECK: %[[ARG_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 2, 3, 1]> : tensor<4xi32>}
// CHECK: %[[ARG_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%arg0, %[[ARG_PERM]])
// CHECK: %[[CONV2D:[0-9]*]] = "tf.Conv2D"(%[[ARG_TRANSPOSE]], %arg1)
// CHECK-SAME: data_format = "NHWC"
// CHECK-SAME: dilations = [1, 3, 4, 2]
// CHECK-SAME: explicit_paddings = [1, 2, 5, 6, 7, 8, 3, 4]
// CHECK-SAME: padding = "EXPLICIT"
// CHECK-SAME: strides = [5, 7, 8, 6]
// CHECK-SAME: (tensor<1x32x32x3xf32>, tensor<1x1x3x8xf32>) -> tensor<1x32x32x8xf32>
// CHECK: %[[RES_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>}
// CHECK: %[[RES_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%[[CONV2D]], %[[RES_PERM]])
// CHECK: return %[[RES_TRANSPOSE]]
%0 = "tf.Conv2D"(%input, %filter)
{
data_format = "NCHW",
dilations = [1, 2, 3, 4],
explicit_paddings = [1, 2, 3, 4, 5, 6, 7, 8],
padding = "EXPLICIT",
strides = [5, 6, 7, 8]
} : (tensor<1x3x32x32xf32>, tensor<1x1x3x8xf32>) -> tensor<1x8x32x32xf32>
return %0 : tensor<1x8x32x32xf32>
}

View File

@ -3,14 +3,14 @@
// CHECK-LABEL: func @move_across_single_op
func @move_across_single_op(%arg0: tensor<1x4x4x8xf32>) -> tensor<1x8x4x4xf32> {
// CHECK: %[[ARG_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>}
// CHECK: %[[ARG_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>}
// CHECK: %[[ARG_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%arg0, %[[ARG_PERM]])
// CHECK: %[[TANH:[0-9]*]] = "tf.Tanh"(%[[ARG_TRANSPOSE]]) {{.*}} tensor<1x8x4x4xf32>
// CHECK: return %[[TANH]]
%0 = "tf.Tanh"(%arg0) : (tensor<1x4x4x8xf32>) -> tensor<1x4x4x8xf32>
%1 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>} : () -> tensor<4xi64>
%2 = "tf.Transpose"(%0, %1) : (tensor<1x4x4x8xf32>, tensor<4xi64>) -> tensor<1x8x4x4xf32>
%1 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>} : () -> tensor<4xi32>
%2 = "tf.Transpose"(%0, %1) : (tensor<1x4x4x8xf32>, tensor<4xi32>) -> tensor<1x8x4x4xf32>
return %2 : tensor<1x8x4x4xf32>
}
@ -18,17 +18,17 @@ func @move_across_single_op(%arg0: tensor<1x4x4x8xf32>) -> tensor<1x8x4x4xf32> {
// CHECK-LABEL: func @move_across_multiple_ops
func @move_across_multiple_ops(%arg0: tensor<1x4x4x8xf32>) -> tensor<1x8x4x4xf32> {
// CHECK: %[[ARG_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>}
// CHECK: %[[ARG_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>}
// CHECK: %[[ARG_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%arg0, %[[ARG_PERM]])
// CHECK: %[[TANH0:[0-9]*]] = "tf.Tanh"(%[[ARG_TRANSPOSE]]) {{.*}} tensor<1x8x4x4xf32>
// CHECK: %[[TANH1:[0-9]*]] = "tf.Tanh"(%[[TANH0]]) {{.*}} tensor<1x8x4x4xf32>
// CHECK: return %[[TANH1]]
// CHECK: %[[TANH:[0-9]*]] = "tf.Tanh"(%[[ARG_TRANSPOSE]]) {{.*}} tensor<1x8x4x4xf32>
// CHECK: %[[RELU:[0-9]*]] = "tf.Relu"(%[[TANH]]) {{.*}} tensor<1x8x4x4xf32>
// CHECK: return %[[RELU]]
%0 = "tf.Tanh"(%arg0) : (tensor<1x4x4x8xf32>) -> tensor<1x4x4x8xf32>
%1 = "tf.Tanh"(%0) : (tensor<1x4x4x8xf32>) -> tensor<1x4x4x8xf32>
%1 = "tf.Relu"(%0) : (tensor<1x4x4x8xf32>) -> tensor<1x4x4x8xf32>
%2 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>} : () -> tensor<4xi64>
%3 = "tf.Transpose"(%1, %2) : (tensor<1x4x4x8xf32>, tensor<4xi64>) -> tensor<1x8x4x4xf32>
%2 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>} : () -> tensor<4xi32>
%3 = "tf.Transpose"(%1, %2) : (tensor<1x4x4x8xf32>, tensor<4xi32>) -> tensor<1x8x4x4xf32>
return %3 : tensor<1x8x4x4xf32>
}
@ -36,15 +36,15 @@ func @move_across_multiple_ops(%arg0: tensor<1x4x4x8xf32>) -> tensor<1x8x4x4xf32
// CHECK-LABEL: func @move_across_multi_operand_op
func @move_across_multi_operand_op(%arg0: tensor<1x4x4x8xf32>, %arg1: tensor<1x4x4x8xf32>) -> tensor<1x8x4x4xf32> {
// CHECK: %[[ARG_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>}
// CHECK: %[[ARG_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>}
// CHECK: %[[ARG0_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%arg0, %[[ARG_PERM]])
// CHECK: %[[ARG1_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%arg1, %[[ARG_PERM]])
// CHECK: %[[ADD:[0-9]*]] = "tf.AddV2"(%[[ARG0_TRANSPOSE]], %[[ARG1_TRANSPOSE]]) {{.*}} tensor<1x8x4x4xf32>
// CHECK: return %[[ADD]]
%0 = "tf.AddV2"(%arg0, %arg1) : (tensor<1x4x4x8xf32>, tensor<1x4x4x8xf32>) -> tensor<1x4x4x8xf32>
%1 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>} : () -> tensor<4xi64>
%2 = "tf.Transpose"(%0, %1) : (tensor<1x4x4x8xf32>, tensor<4xi64>) -> tensor<1x8x4x4xf32>
%1 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>} : () -> tensor<4xi32>
%2 = "tf.Transpose"(%0, %1) : (tensor<1x4x4x8xf32>, tensor<4xi32>) -> tensor<1x8x4x4xf32>
return %2 : tensor<1x8x4x4xf32>
}
@ -52,7 +52,7 @@ func @move_across_multi_operand_op(%arg0: tensor<1x4x4x8xf32>, %arg1: tensor<1x4
// CHECK-LABEL: func @move_with_multiple_uses
func @move_with_multiple_uses(%arg0: tensor<1x4x4x8xf32>) -> tensor<1x8x4x4xf32> {
// CHECK: %[[ARG_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>}
// CHECK: %[[ARG_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>}
// CHECK: %[[ARG_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%arg0, %[[ARG_PERM]])
// CHECK: %[[TANH:[0-9]*]] = "tf.Tanh"(%[[ARG_TRANSPOSE]]) {{.*}} tensor<1x8x4x4xf32>
// CHECK: %[[ADD:[0-9]*]] = "tf.AddV2"(%[[TANH]], %[[TANH]]) {{.*}} tensor<1x8x4x4xf32>
@ -60,8 +60,8 @@ func @move_with_multiple_uses(%arg0: tensor<1x4x4x8xf32>) -> tensor<1x8x4x4xf32>
%0 = "tf.Tanh"(%arg0) : (tensor<1x4x4x8xf32>) -> tensor<1x4x4x8xf32>
%1 = "tf.AddV2"(%0, %0) : (tensor<1x4x4x8xf32>, tensor<1x4x4x8xf32>) -> tensor<1x4x4x8xf32>
%2 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>} : () -> tensor<4xi64>
%3 = "tf.Transpose"(%1, %2) : (tensor<1x4x4x8xf32>, tensor<4xi64>) -> tensor<1x8x4x4xf32>
%2 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>} : () -> tensor<4xi32>
%3 = "tf.Transpose"(%1, %2) : (tensor<1x4x4x8xf32>, tensor<4xi32>) -> tensor<1x8x4x4xf32>
return %3 : tensor<1x8x4x4xf32>
}

View File

@ -3,13 +3,13 @@
// CHECK-LABEL: func @move_across_single_op
func @move_across_single_op(%arg0: tensor<1x4x4x8xf32>) -> tensor<1x8x4x4xf32> {
// CHECK: %[[RES_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>}
// CHECK: %[[RES_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>}
// CHECK: %[[TANH:[0-9]*]] = "tf.Tanh"(%arg0) {{.*}} tensor<1x4x4x8xf32>
// CHECK: %[[RES_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%[[TANH]], %[[RES_PERM]]) {{.*}} tensor<1x8x4x4xf32>
// CHECK: return %[[RES_TRANSPOSE]]
%0 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>} : () -> tensor<4xi64>
%1 = "tf.Transpose"(%arg0, %0) : (tensor<1x4x4x8xf32>, tensor<4xi64>) -> tensor<1x8x4x4xf32>
%0 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>} : () -> tensor<4xi32>
%1 = "tf.Transpose"(%arg0, %0) : (tensor<1x4x4x8xf32>, tensor<4xi32>) -> tensor<1x8x4x4xf32>
%2 = "tf.Tanh"(%1) : (tensor<1x8x4x4xf32>) -> tensor<1x8x4x4xf32>
return %2 : tensor<1x8x4x4xf32>
@ -18,16 +18,16 @@ func @move_across_single_op(%arg0: tensor<1x4x4x8xf32>) -> tensor<1x8x4x4xf32> {
// CHECK-LABEL: func @move_across_multiple_ops
func @move_across_multiple_ops(%arg0: tensor<1x4x4x8xf32>) -> tensor<1x8x4x4xf32> {
// CHECK: %[[RES_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>}
// CHECK: %[[TANH0:[0-9]*]] = "tf.Tanh"(%arg0) {{.*}} tensor<1x4x4x8xf32>
// CHECK: %[[TANH1:[0-9]*]] = "tf.Tanh"(%[[TANH0]]) {{.*}} tensor<1x4x4x8xf32>
// CHECK: %[[RES_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%[[TANH1]], %[[RES_PERM]])
// CHECK: %[[RES_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>}
// CHECK: %[[TANH:[0-9]*]] = "tf.Tanh"(%arg0) {{.*}} tensor<1x4x4x8xf32>
// CHECK: %[[RELU:[0-9]*]] = "tf.Relu"(%[[TANH]]) {{.*}} tensor<1x4x4x8xf32>
// CHECK: %[[RES_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%[[RELU]], %[[RES_PERM]])
// CHECK: return %[[RES_TRANSPOSE]]
%0 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>} : () -> tensor<4xi64>
%1 = "tf.Transpose"(%arg0, %0) : (tensor<1x4x4x8xf32>, tensor<4xi64>) -> tensor<1x8x4x4xf32>
%0 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>} : () -> tensor<4xi32>
%1 = "tf.Transpose"(%arg0, %0) : (tensor<1x4x4x8xf32>, tensor<4xi32>) -> tensor<1x8x4x4xf32>
%2 = "tf.Tanh"(%1) : (tensor<1x8x4x4xf32>) -> tensor<1x8x4x4xf32>
%3 = "tf.Tanh"(%2) : (tensor<1x8x4x4xf32>) -> tensor<1x8x4x4xf32>
%3 = "tf.Relu"(%2) : (tensor<1x8x4x4xf32>) -> tensor<1x8x4x4xf32>
return %3 : tensor<1x8x4x4xf32>
}
@ -35,14 +35,14 @@ func @move_across_multiple_ops(%arg0: tensor<1x4x4x8xf32>) -> tensor<1x8x4x4xf32
// CHECK-LABEL: func @move_across_multi_operand_op
func @move_across_multi_operand_op(%arg0: tensor<1x4x4x8xf32>, %arg1: tensor<1x4x4x8xf32>) -> tensor<1x8x4x4xf32> {
// CHECK: %[[RES_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>}
// CHECK: %[[RES_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>}
// CHECK: %[[ADD:[0-9]*]] = "tf.AddV2"(%arg0, %arg1) {{.*}} tensor<1x4x4x8xf32>
// CHECK: %[[RES_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%[[ADD]], %[[RES_PERM]])
// CHECK: return %[[RES_TRANSPOSE]]
%0 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>} : () -> tensor<4xi64>
%1 = "tf.Transpose"(%arg0, %0) : (tensor<1x4x4x8xf32>, tensor<4xi64>) -> tensor<1x8x4x4xf32>
%2 = "tf.Transpose"(%arg1, %0) : (tensor<1x4x4x8xf32>, tensor<4xi64>) -> tensor<1x8x4x4xf32>
%0 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>} : () -> tensor<4xi32>
%1 = "tf.Transpose"(%arg0, %0) : (tensor<1x4x4x8xf32>, tensor<4xi32>) -> tensor<1x8x4x4xf32>
%2 = "tf.Transpose"(%arg1, %0) : (tensor<1x4x4x8xf32>, tensor<4xi32>) -> tensor<1x8x4x4xf32>
%3 = "tf.AddV2"(%1, %2) : (tensor<1x8x4x4xf32>, tensor<1x8x4x4xf32>) -> tensor<1x8x4x4xf32>
return %3 : tensor<1x8x4x4xf32>
@ -54,14 +54,14 @@ func @fold_into_max_pool(%arg0: tensor<1x64x112x112xf32>) -> tensor<1x56x56x64xf
// MaxPool operand transpose must be folded into the op and MaxPool
// must use NCHW data format with updated kernel size and strides.
// CHECK: %[[RES_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 2, 3, 1]> : tensor<4xi64>}
// CHECK: %[[RES_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 2, 3, 1]> : tensor<4xi32>}
// CHECK: %[[MAX_POOL:[0-9]*]] = "tf.MaxPool"(%arg0) {data_format = "NCHW", ksize = [1, 1, 3, 3], padding = "SAME", strides = [1, 1, 2, 2]} : (tensor<1x64x112x112xf32>) -> tensor<1x64x56x56xf32>
// CHECK: %[[RES_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%[[ADD]], %[[RES_PERM]])
// CHECK: %[[RES_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%[[MAX_POOL]], %[[RES_PERM]])
// CHECK: return %[[RES_TRANSPOSE]]
// Transpose NCHW -> NHWC
%0 = "tf.Const"() {value = dense<[0, 2, 3, 1]> : tensor<4xi64>} : () -> tensor<4xi64>
%1 = "tf.Transpose"(%arg0, %0) : (tensor<1x64x112x112xf32>, tensor<4xi64>) -> tensor<1x112x112x64xf32>
%0 = "tf.Const"() {value = dense<[0, 2, 3, 1]> : tensor<4xi32>} : () -> tensor<4xi32>
%1 = "tf.Transpose"(%arg0, %0) : (tensor<1x64x112x112xf32>, tensor<4xi32>) -> tensor<1x112x112x64xf32>
// Compute MaxPool in NHWC format
%2 = "tf.MaxPool"(%1)
@ -72,3 +72,49 @@ func @fold_into_max_pool(%arg0: tensor<1x64x112x112xf32>) -> tensor<1x56x56x64xf
return %2 : tensor<1x56x56x64xf32>
}
// CHECK-LABEL: func @fold_into_mean
func @fold_into_mean(%arg0: tensor<1x64x112x112xf32>) -> tensor<1x64xf32> {
// CHECK: %[[RED_IDX:[0-9]*]] = "tf.Const"() {value = dense<[2, 3]> : tensor<2xi32>}
// CHECK: %[[MEAN:[0-9]*]] = "tf.Mean"(%arg0, %[[RED_IDX]])
// CHECK-SAME: (tensor<1x64x112x112xf32>, tensor<2xi32>) -> tensor<1x64xf32>
// CHECK: return %[[MEAN]]
// Transpose NCHW -> NHWC
%0 = "tf.Const"() {value = dense<[0, 2, 3, 1]> : tensor<4xi32>} : () -> tensor<4xi32>
%1 = "tf.Transpose"(%arg0, %0) : (tensor<1x64x112x112xf32>, tensor<4xi32>) -> tensor<1x112x112x64xf32>
// Compute Mean over spatial dimensions in NHWC format.
%2 = "tf.Const"() {value = dense<[1, 2]> : tensor<2xi32>} : () -> tensor<2xi32>
%3 = "tf.Mean"(%1, %2) : (tensor<1x112x112x64xf32>, tensor<2xi32>) -> tensor<1x64xf32>
return %3 : tensor<1x64xf32>
}
// CHECK-LABEL: func @fold_into_fused_batch_norm
func @fold_into_fused_batch_norm(%arg0: tensor<1x64x112x112xf32>, %arg1: tensor<64xf32>) -> tensor<1x112x112x64xf32> {
// CHECK: %[[RES_PERM:[0-9]*]] = "tf.Const"() {value = dense<[0, 2, 3, 1]> : tensor<4xi32>}
// CHECK: "tf.FusedBatchNormV3"(%arg0, {{.*}} {data_format = "NCHW"
// CHECK: %[[RES_TRANSPOSE:[0-9]*]] = "tf.Transpose"(%y, %[[RES_PERM]])
// CHECK: return %[[RES_TRANSPOSE]]
// Transpose NCHW -> NHWC
%0 = "tf.Const"() {value = dense<[0, 2, 3, 1]> : tensor<4xi32>} : () -> tensor<4xi32>
%1 = "tf.Transpose"(%arg0, %0) : (tensor<1x64x112x112xf32>, tensor<4xi32>) -> tensor<1x112x112x64xf32>
// Compute FusedBatchNormV3 in NHWC format
%2, %batch_mean, %batch_var, %reserve_1, %reserve_2, %reserve_3
= "tf.FusedBatchNormV3"(%1, %arg1, %arg1, %arg1, %arg1)
{
data_format = "NHWC",
epsilon = 1.001 : f32,
exponential_avg_factor = 1.0 : f32,
is_training = false
}
: (tensor<1x112x112x64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>)
-> (tensor<1x112x112x64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>)
return %2#0 : tensor<1x112x112x64xf32>
}

View File

@ -4,15 +4,15 @@
func @transposeBiasAdd(%arg0: tensor<1x8x4x4xf32>, %arg1: tensor<8xf32>) -> tensor<1x8x4x4xf32> {
// Convert input: NCHW -> NHWC
%0 = "tf.Const"() {value = dense<[0, 2, 3, 1]> : tensor<4xi64>} : () -> tensor<4xi64>
%1 = "tf.Transpose"(%arg0, %0) : (tensor<1x8x4x4xf32>, tensor<4xi64>) -> tensor<1x4x4x8xf32>
%0 = "tf.Const"() {value = dense<[0, 2, 3, 1]> : tensor<4xi32>} : () -> tensor<4xi32>
%1 = "tf.Transpose"(%arg0, %0) : (tensor<1x8x4x4xf32>, tensor<4xi32>) -> tensor<1x4x4x8xf32>
// Compute in NHWC
%2 = "tf.BiasAdd"(%1, %arg1) {data_format = "NHWC"} : (tensor<1x4x4x8xf32>, tensor<8xf32>) -> tensor<1x4x4x8xf32>
// Convert result back: NHWC -> NCHW
%3 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi64>} : () -> tensor<4xi64>
%4 = "tf.Transpose"(%2, %3) : (tensor<1x4x4x8xf32>, tensor<4xi64>) -> tensor<1x8x4x4xf32>
%3 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>} : () -> tensor<4xi32>
%4 = "tf.Transpose"(%2, %3) : (tensor<1x4x4x8xf32>, tensor<4xi32>) -> tensor<1x8x4x4xf32>
// Check that BiasAdd computed in NCHW format, and all redundant transpose
// operations removed from the function.

View File

@ -0,0 +1,156 @@
// RUN: tf-opt %s -tf-layout-optimization=force-data-format=NHWC -verify-diagnostics | FileCheck %s --dump-input=always
// CHECK-LABEL: func @transpose_resnet_layer
func @transpose_resnet_layer(%arg0: tensor<?x224x224x3xf32>, // input
%arg1: tensor<64xf32>, // batch_norm args
%arg2: tensor<256xf32>, // batch_norm args
%arg3: tensor<7x7x3x64xf32>, // conv filter #0
%arg4: tensor<1x1x64x256xf32> // conv filter #1
) -> tensor<?x256xf32> {
// This is a simplified ResNet layer that gets input in NHWC format, converts
// it to NCHW before padding, and does all computations in NCHW (this is the
// default setup for ResNet model trained in fp32 on GPU).
//
// To be able to use Tensor Cores on latest NVIDIA GPUs this model has to be
// converted to NHWC data format.
// Padding in spatial dimension (NCHW)
%0 = "tf.Const"() {value = dense<[[0, 0], [0, 0], [3, 3], [3, 3]]> : tensor<4x2xi32>} : () -> tensor<4x2xi32>
// Reduce over spatial dimensions (NCHW)
%1 = "tf.Const"() {value = dense<[2, 3]> : tensor<2xi32>} : () -> tensor<2xi32>
// Transpose input: NHWC -> NCHW
%2 = "tf.Const"() {value = dense<[0, 3, 1, 2]> : tensor<4xi32>} : () -> tensor<4xi32>
%3 = "tf.Transpose"(%arg0, %2) : (tensor<?x224x224x3xf32>, tensor<4xi32>) -> tensor<?x3x224x224xf32>
// Pad spatial dimensions.
%4 = "tf.Pad"(%3, %0) : (tensor<?x3x224x224xf32>, tensor<4x2xi32>) -> tensor<?x3x230x230xf32>
// Shuffled paddings.
// CHECK: %[[PADDINGS:[0-9]*]] = "tf.Const"(){{.*}}[0, 0], [3, 3], [3, 3], [0, 0]
// Pad input with new paddings.
// CHECK: %[[PAD:[0-9]*]] = "tf.Pad"(%arg0, %[[PADDINGS]])
// CHECK-SAME: (tensor<?x224x224x3xf32>, tensor<4x2xi32>) -> tensor<?x230x230x3xf32>
// ------------------------------------------------------------------------ //
// Convolution layer #0.
// ------------------------------------------------------------------------ //
%5 = "tf.Conv2D"(%4, %arg3)
{
data_format = "NCHW",
dilations = [1, 1, 1, 1],
explicit_paddings = [],
padding = "VALID",
strides = [1, 1, 2, 2]
} : (tensor<?x3x230x230xf32>, tensor<7x7x3x64xf32>) -> tensor<?x64x112x112xf32>
// CHECK: %[[CONV0:[0-9]*]] = "tf.Conv2D"
// CHECK-SAME %[[PAD]]
// CHECK-SAME: data_format = "NHWC"
// CHECK-SAME: strides = [1, 2, 2, 1]
%6, %batch_mean, %batch_variance, %reserved_1, %reserved_2, %reserved_3 =
"tf.FusedBatchNormV3"(%5, %arg1, %arg1, %arg1, %arg1)
{
data_format = "NCHW",
epsilon = 1.001000e-05 : f32,
is_training = false
} : (tensor<?x64x112x112xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>)
-> (tensor<?x64x112x112xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<64xf32>, tensor<*xf32>)
// CHECK: "tf.FusedBatchNormV3"
// CHECK-SAME: data_format = "NHWC"
%7 = "tf.Relu"(%6) : (tensor<?x64x112x112xf32>) -> tensor<?x64x112x112xf32>
%8 = "tf.MaxPool"(%7)
{
data_format = "NCHW",
ksize = [1, 1, 3, 3],
padding = "SAME",
strides = [1, 1, 2, 2]
} : (tensor<?x64x112x112xf32>) -> tensor<?x64x56x56xf32>
// CHECK: %[[MAX_POOL:[0-9]*]] = "tf.MaxPool"
// CHECK-SAME: data_format = "NHWC"
// CHECK-SAME: ksize = [1, 3, 3, 1]
// CHECK-SAME: strides = [1, 2, 2, 1]
// ------------------------------------------------------------------------ //
// Convolution layer #1.
// ------------------------------------------------------------------------ //
%9 = "tf.Conv2D"(%8, %arg4)
{
data_format = "NCHW",
dilations = [1, 1, 1, 1],
explicit_paddings = [],
padding = "VALID",
strides = [1, 1, 1, 1]
} : (tensor<?x64x56x56xf32>, tensor<1x1x64x256xf32>) -> tensor<?x256x56x56xf32>
// CHECK: %[[CONV1:[0-9]*]] = "tf.Conv2D"(%[[MAX_POOL]], %arg4)
// CHECK-SAME: data_format = "NHWC"
%10, %batch_mean_1, %batch_variance_1, %reserved_1_1, %reserved_1_2, %reserved_1_3 =
"tf.FusedBatchNormV3"(%9, %arg2, %arg2, %arg2, %arg2)
{
data_format = "NCHW",
epsilon = 1.001000e-05 : f32
} : (tensor<?x256x56x56xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>)
-> (tensor<?x256x56x56xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<*xf32>)
// CHECK: %[[BATCH_NORM1:[_a-z0-9]*]], {{.*}} = "tf.FusedBatchNormV3"
// CHECK-SAME: %[[CONV1]]
// CHECK-SAME: data_format = "NHWC"
// ------------------------------------------------------------------------ //
// Convolution layer #2.
// ------------------------------------------------------------------------ //
%11 = "tf.Conv2D"(%8, %arg4)
{
data_format = "NCHW",
dilations = [1, 1, 1, 1],
explicit_paddings = [],
padding = "VALID",
strides = [1, 1, 1, 1]
} : (tensor<?x64x56x56xf32>, tensor<1x1x64x256xf32>) -> tensor<?x256x56x56xf32>
// CHECK: %[[CONV2:[0-9]*]] = "tf.Conv2D"(%[[MAX_POOL]], %arg4)
// CHECK-SAME: data_format = "NHWC"
%12, %batch_mean_2, %batch_variance_2, %reserved_2_1, %reserved_2_2, %reserved_2_3 =
"tf.FusedBatchNormV3"(%11, %arg2, %arg2, %arg2, %arg2)
{
data_format = "NCHW",
epsilon = 1.001000e-05 : f32
} : (tensor<?x256x56x56xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>)
-> (tensor<?x256x56x56xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<*xf32>)
// CHECK: %[[BATCH_NORM2:[_a-z0-9]*]], {{.*}} = "tf.FusedBatchNormV3"
// CHECK-SAME: %[[CONV2]]
// CHECK-SAME: data_format = "NHWC"
// ------------------------------------------------------------------------ //
// Add results of convolution layers #1 and #2.
// ------------------------------------------------------------------------ //
%14 = "tf.AddV2"(%10, %12) : (tensor<?x256x56x56xf32>, tensor<?x256x56x56xf32>) -> tensor<?x256x56x56xf32>
%15 = "tf.Relu"(%14) : (tensor<?x256x56x56xf32>) -> tensor<?x256x56x56xf32>
// CHECK: %[[ADD:[0-9]*]] = "tf.AddV2"(%[[BATCH_NORM1]], %[[BATCH_NORM2]])
// CHECK: %[[RELU:[0-9]*]] = "tf.Relu"(%[[ADD]])
// Reduce spatial dimensions
%16 = "tf.Mean"(%15, %1) : (tensor<?x256x56x56xf32>, tensor<2xi32>) -> tensor<?x256xf32>
// Mean should compute reduction over NHWC spatial dimensions.
// CHECK: %[[MEAN_DIMS:[0-9]*]] = "tf.Const"() {value = dense<[1, 2]> : tensor<2xi32>}
// CHECK: %[[MEAN:[0-9]*]] = "tf.Mean"(%[[RELU]], %[[MEAN_DIMS]])
// CHECK-SAME: (tensor<?x56x56x256xf32>, tensor<2xi32>) -> tensor<?x256xf32>
// CHECK: return %[[MEAN]] : tensor<?x256xf32>
return %16 : tensor<?x256xf32>
}

View File

@ -0,0 +1,194 @@
// RUN: tf-opt %s -tf-parallel-execute-to-islands | FileCheck %s --dump-input=fail
// CHECK-LABEL: func @check_regions_to_islands
func @check_regions_to_islands() {
tf_executor.graph {
tf_executor.island() {
"tf_device.parallel_execute"() ({
tf_device.return
},
{
tf_device.return
}) {} : () -> ()
tf_executor.yield
}
tf_executor.fetch
}
return
}
// CHECK: %[[ISLAND_INPUT_CTL:[a-z_0-9]*]] = tf_executor.island {
// CHECK-NEXT: tf_executor.yield
// CHECK: %[[ISLAND_1_CTL:[a-z_0-9]*]] = tf_executor.island(%[[ISLAND_INPUT_CTL]]) {
// CHECK: tf_executor.yield
// CHECK: %[[ISLAND_2_CTL:[a-z_0-9]*]] = tf_executor.island(%[[ISLAND_INPUT_CTL]]) {
// CHECK: tf_executor.yield
// CHECK: %{{.*}} = tf_executor.island(%[[ISLAND_1_CTL]], %[[ISLAND_2_CTL]]) {
// CHECK-NEXT: tf_executor.yield
// CHECK-LABEL: func @check_regions_to_islands_with_inputs
// CHECK-SAME: (%[[ARG_0:[a-z0-9]*]]: tensor<i1>)
func @check_regions_to_islands_with_inputs(%arg0 : tensor<i1>) {
tf_executor.graph {
%1:2 = tf_executor.island {
%2 = "tf.opA"(%arg0) : (tensor<i1>) -> tensor<i1>
tf_executor.yield %2 : tensor<i1>
}
tf_executor.island() {
"tf_device.parallel_execute"() ({
%3 = "tf.opB"(%1#0) : (tensor<i1>) -> tensor<i1>
tf_device.return %3 : tensor<i1>
},
{
%5 = "tf.opC"(%1#0) : (tensor<i1>) -> tensor<i32>
tf_device.return %5 : tensor<i32>
}) {} : () -> (tensor<i1>, tensor<i32>)
tf_executor.yield
}
tf_executor.fetch
}
return
}
// CHECK: %[[INPUT_A:[a-z_0-9]*]], %{{.*}} = tf_executor.island {
// CHECK-NEXT: %[[OP_A_OUTPUT:[a-z_0-9]*]] = "tf.opA"(%[[ARG_0]]) : (tensor<i1>) -> tensor<i1>
// CHECK-NEXT: tf_executor.yield %[[OP_A_OUTPUT]] : tensor<i1>
// CHECK: %[[INPUT_0:[a-z_0-9]*]], %[[INPUT_CONTROL:[a-z_0-9]*]] = tf_executor.island {
// CHECK-NEXT: tf_executor.yield %[[INPUT_A]] : tensor<i1>
// CHECK: %[[ISLAND_1_OUTPUT:[a-z_0-9]*]], %[[ISLAND_1_CTL:[a-z_0-9]*]] = tf_executor.island {
// CHECK-NEXT: %[[OP_B_OUTPUT:[a-z_0-9]*]] = "tf.opB"(%[[INPUT_0]]) : (tensor<i1>) -> tensor<i1>
// CHECK: tf_executor.yield %[[OP_B_OUTPUT]] : tensor<i1>
// CHECK: %[[ISLAND_2_OUTPUT:[a-z_0-9]*]], %[[ISLAND_2_CTL:[a-z_0-9]*]] = tf_executor.island {
// CHECK-NEXT: %[[OP_C_OUTPUT:[a-z_0-9]*]] = "tf.opC"(%outputs_0) : (tensor<i1>) -> tensor<i32>
// CHECK: tf_executor.yield %[[OP_C_OUTPUT]] : tensor<i32>
// CHECK: %{{.*}} = tf_executor.island(%[[ISLAND_1_CTL]], %[[ISLAND_2_CTL]]) {
// CHECK-NEXT: tf_executor.yield
// CHECK-LABEL: func @check_input_sink_island_forwards_control_inputs
// CHECK-SAME: (%[[ARG_0:[a-z0-9]*]]: tensor<i1>)
func @check_input_sink_island_forwards_control_inputs(%arg0 : tensor<i1>) {
tf_executor.graph {
%1:2 = tf_executor.island {
%2 = "tf.opA"(%arg0) : (tensor<i1>) -> tensor<i1>
tf_executor.yield %2 : tensor<i1>
}
%7 = tf_executor.ControlTrigger {}
%8 = tf_executor.ControlTrigger {}
tf_executor.island(%7, %8) {
"tf_device.parallel_execute"() ({
%3 = "tf.opB"(%1#0) : (tensor<i1>) -> tensor<i1>
tf_device.return %3 : tensor<i1>
},
{
%5 = "tf.opC"() : () -> tensor<i32>
tf_device.return %5 : tensor<i32>
}) {} : () -> (tensor<i1>, tensor<i32>)
tf_executor.yield
}
tf_executor.fetch
}
return
}
// CHECK: %[[INPUT_A:[a-z_0-9]*]], %{{.*}} = tf_executor.island {
// CHECK-NEXT: %[[OP_A_OUTPUT:[a-z_0-9]*]] = "tf.opA"(%[[ARG_0]]) : (tensor<i1>) -> tensor<i1>
// CHECK-NEXT: tf_executor.yield %[[OP_A_OUTPUT]] : tensor<i1>
// CHECK: %[[CT_0:[0-9]*]] = tf_executor.ControlTrigger
// CHECK: %[[CT_1:[0-9]*]] = tf_executor.ControlTrigger
// CHECK: %[[INPUT_0:[a-z_0-9]*]], %[[INPUT_CONTROL:[a-z_0-9]*]] = tf_executor.island(%[[CT_0]], %[[CT_1]]) {
// CHECK-NEXT: tf_executor.yield %[[INPUT_A]] : tensor<i1>
// CHECK: %[[ISLAND_1_OUTPUT:[a-z_0-9]*]], %[[ISLAND_1_CTL:[a-z_0-9]*]] = tf_executor.island {
// CHECK-NEXT: %[[OP_B_OUTPUT:[a-z_0-9]*]] = "tf.opB"(%[[INPUT_0]]) : (tensor<i1>) -> tensor<i1>
// CHECK: tf_executor.yield %[[OP_B_OUTPUT]] : tensor<i1>
// CHECK: %[[ISLAND_2_OUTPUT:[a-z_0-9]*]], %[[ISLAND_2_CTL:[a-z_0-9]*]] = tf_executor.island(%[[INPUT_CONTROL]]) {
// CHECK-NEXT: %[[OP_C_OUTPUT:[a-z_0-9]*]] = "tf.opC"() : () -> tensor<i32>
// CHECK: tf_executor.yield %[[OP_C_OUTPUT]] : tensor<i32>
// CHECK: %{{.*}} = tf_executor.island(%[[ISLAND_1_CTL]], %[[ISLAND_2_CTL]]) {
// CHECK-NEXT: tf_executor.yield
// CHECK-LABEL: func @check_control_dep_added_when_region_does_not_have_inputs
// CHECK-SAME: (%[[ARG_0:[a-z0-9]*]]: tensor<i1>)
func @check_control_dep_added_when_region_does_not_have_inputs(%arg0 : tensor<i1>) {
tf_executor.graph {
%1:2 = tf_executor.island {
%2 = "tf.opA"(%arg0) : (tensor<i1>) -> tensor<i1>
tf_executor.yield %2 : tensor<i1>
}
%7:3 = tf_executor.island() {
%8:2 = "tf_device.parallel_execute"() (
{
%3 = "tf.opB"() : () -> tensor<i1>
tf_device.return %3 : tensor<i1>
},
{
%5 = "tf.opC"(%1#0) : (tensor<i1>) -> tensor<i32>
tf_device.return %5 : tensor<i32>
}
) {} : () -> (tensor<i1>, tensor<i32>)
tf_executor.yield %8#0, %8#1 : tensor<i1>, tensor<i32>
}
tf_executor.island {
"tf.opD"(%7#0, %7#1) : (tensor<i1>, tensor<i32>) -> ()
tf_executor.yield
}
tf_executor.fetch
}
return
}
// CHECK: %[[INPUT_A:[a-z_0-9]*]], %{{.*}} = tf_executor.island {
// CHECK-NEXT: %[[OP_A_OUTPUT:[a-z_0-9]*]] = "tf.opA"(%[[ARG_0]]) : (tensor<i1>) -> tensor<i1>
// CHECK-NEXT: tf_executor.yield %[[OP_A_OUTPUT]] : tensor<i1>
// CHECK: %[[INPUT_0:[a-z_0-9]*]], %[[INPUT_CTL:[a-z_0-9]*]] = tf_executor.island {
// CHECK-NEXT: tf_executor.yield %[[INPUT_A]] : tensor<i1>
// CHECK: %[[ISLAND_1_OUTPUT:[a-z_0-9]*]], %{{.*}} = tf_executor.island(%[[INPUT_CTL]]) {
// CHECK-NEXT: %[[OP_B_OUTPUT:[a-z_0-9]*]] = "tf.opB"() : () -> tensor<i1>
// CHECK: tf_executor.yield %[[OP_B_OUTPUT]] : tensor<i1>
// CHECK: %[[ISLAND_2_OUTPUT:[a-z_0-9]*]], %{{.*}} = tf_executor.island {
// CHECK-NEXT: %[[OP_C_OUTPUT:[a-z_0-9]*]] = "tf.opC"(%outputs_0) : (tensor<i1>) -> tensor<i32>
// CHECK: tf_executor.yield %[[OP_C_OUTPUT]] : tensor<i32>
// CHECK: %{{.*}} = tf_executor.island {
// CHECK-NEXT: tf_executor.yield %[[ISLAND_1_OUTPUT]], %[[ISLAND_2_OUTPUT]]
// CHECK-LABEL: func @check_output_barrier_correctly_forwards_outputs
func @check_output_barrier_correctly_forwards_outputs(%arg0 : tensor<i1>) -> tensor<i1> {
%0 = tf_executor.graph {
%1:2 = tf_executor.island {
%2 = "tf.opA"(%arg0) : (tensor<i1>) -> tensor<i1>
tf_executor.yield %2 : tensor<i1>
}
%8:3 = tf_executor.island() {
%7:2 = "tf_device.parallel_execute"() ({
%3 = "tf.opB"() : () -> tensor<i1>
tf_device.return %3 : tensor<i1>
},
{
%5 = "tf.opC"(%1#0) : (tensor<i1>) -> tensor<i32>
tf_device.return %5 : tensor<i32>
}) {} : () -> (tensor<i1>, tensor<i32>)
tf_executor.yield %7#0, %7#1 : tensor<i1>, tensor<i32>
}
tf_executor.fetch %8#0 : tensor<i1>
}
return %0 : tensor<i1>
}
// CHECK: %[[INPUT_A:[a-z_0-9]*]], %{{.*}} = tf_executor.island {
// CHECK-NEXT: %[[OP_A_OUTPUT:[a-z_0-9]*]] = "tf.opA"(%[[ARG_0]]) : (tensor<i1>) -> tensor<i1>
// CHECK-NEXT: tf_executor.yield %[[OP_A_OUTPUT]] : tensor<i1>
// CHECK: %[[INPUT_0:[a-z_0-9]*]], %[[INPUT_CTL:[a-z_0-9]*]] = tf_executor.island {
// CHECK-NEXT: tf_executor.yield %[[INPUT_A]] : tensor<i1>
// CHECK: %[[ISLAND_1_OUTPUT:[a-z_0-9]*]], %{{.*}} = tf_executor.island(%[[INPUT_CTL]]) {
// CHECK-NEXT: %[[OP_B_OUTPUT:[a-z_0-9]*]] = "tf.opB"() : () -> tensor<i1>
// CHECK: tf_executor.yield %[[OP_B_OUTPUT]] : tensor<i1>
// CHECK: %[[ISLAND_2_OUTPUT:[a-z_0-9]*]], %{{.*}} = tf_executor.island {
// CHECK-NEXT: %[[OP_C_OUTPUT:[a-z_0-9]*]] = "tf.opC"(%[[INPUT_0]]) : (tensor<i1>) -> tensor<i32>
// CHECK: tf_executor.yield %[[OP_C_OUTPUT]] : tensor<i32>
// CHECK: %[[OUTPUT_SINK_OUTPUT:[a-z_0-9]*]]:2, %[[OUTPUT_SINK_CTL:[a-z_0-9]*]] = tf_executor.island {
// CHECK-NEXT: tf_executor.yield %[[ISLAND_1_OUTPUT]], %[[ISLAND_2_OUTPUT]] : tensor<i1>, tensor<i32>

View File

@ -854,6 +854,78 @@ func @testInvalidIfOp(tensor<i1>, tensor<*xf32>) -> tensor<2xf32> {
// -----
// Test valid tf.MatrixBandPart
// CHECK-LABEL: func @testValidMatrixBandPartOp
func @testValidMatrixBandPartOp(%arg0: tensor<64x64xbf16>, %arg1: tensor<i64>, %arg2: tensor<i64>) -> tensor<64x64xbf16> {
%0 = "tf.MatrixBandPart"(%arg0, %arg1, %arg2) : (tensor<64x64xbf16>, tensor<i64>, tensor<i64>) -> tensor<64x64xbf16>
return %0 : tensor<64x64xbf16>
}
// -----
// Test valid tf.MatrixBandPart
// CHECK-LABEL: func @testValidMatrixBandPartOp3D
func @testValidMatrixBandPartOp3D(%arg0: tensor<64x64x64xbf16>, %arg1: tensor<i64>, %arg2: tensor<i64>) -> tensor<64x64x64xbf16> {
%0 = "tf.MatrixBandPart"(%arg0, %arg1, %arg2) : (tensor<64x64x64xbf16>, tensor<i64>, tensor<i64>) -> tensor<64x64x64xbf16>
return %0 : tensor<64x64x64xbf16>
}
// -----
// Test valid tf.MatrixBandPart
// CHECK-LABEL: func @testValidMatrixBandPartOpUnranked
func @testValidMatrixBandPartOpUnranked(%arg0: tensor<*xbf16>, %arg1: tensor<i64>, %arg2: tensor<i64>) -> tensor<*xbf16> {
%0 = "tf.MatrixBandPart"(%arg0, %arg1, %arg2) : (tensor<*xbf16>, tensor<i64>, tensor<i64>) -> tensor<*xbf16>
return %0 : tensor<*xbf16>
}
// -----
// Test invalid tf.MatrixBandPart
func @testInvalidMatrixBandPartOp(%arg0: tensor<64x64x64xbf16>, %arg1: tensor<i64>, %arg2: tensor<i64>) -> tensor<64x64xbf16> {
// expected-error @+1 {{op failed to verify that all of {input, band} have same type}}
%0 = "tf.MatrixBandPart"(%arg0, %arg1, %arg2) : (tensor<64x64x64xbf16>, tensor<i64>, tensor<i64>) -> tensor<64x64xbf16>
return %0 : tensor<64x64xbf16>
}
// -----
// Test invalid tf.MatrixBandPart
func @testInvalidMatrixBandPartOp(%arg0: tensor<64x64x64xbf16>, %arg1: tensor<i64>, %arg2: tensor<i64>) -> tensor<*xbf16> {
// expected-error @+1 {{op failed to verify that all of {input, band} have same type}}
%0 = "tf.MatrixBandPart"(%arg0, %arg1, %arg2) : (tensor<64x64x64xbf16>, tensor<i64>, tensor<i64>) -> tensor<*xbf16>
return %0 : tensor<*xbf16>
}
// -----
// Test invalid tf.MatrixBandPart
func @testInvalidMatrixBandPartOp(%arg0: tensor<i64>, %arg1: tensor<64x64xi64>, %arg2: tensor<i64>) -> tensor<i64> {
// expected-error @+1 {{op requires `input` to have rank of at least 2, but found 'tensor<i64>'}}
%0 = "tf.MatrixBandPart"(%arg0, %arg1, %arg2) : (tensor<i64>, tensor<64x64xi64>, tensor<i64>) -> tensor<i64>
return %0 : tensor<i64>
}
// -----
// Test invalid tf.MatrixBandPart
func @testInvalidMatrixBandPartOp(%arg0: tensor<64x64xi64>, %arg1: tensor<32xi64>, %arg2: tensor<i64>) -> tensor<64x64xi64> {
// expected-error @+1 {{op requires `num_lower` to have 0 dimensions, but found 'tensor<32xi64>'}}
%0 = "tf.MatrixBandPart"(%arg0, %arg1, %arg2) : (tensor<64x64xi64>, tensor<32xi64>, tensor<i64>) -> tensor<64x64xi64>
return %0 : tensor<64x64xi64>
}
// -----
// Test invalid tf.MatrixBandPart
func @testInvalidMatrixBandPartOp(%arg0: tensor<64x64xi64>, %arg1: tensor<i64>, %arg2: tensor<32xi64>) -> tensor<64x64xi64> {
// expected-error @+1 {{op requires `num_upper` to have 0 dimensions, but found 'tensor<32xi64>'}}
%0 = "tf.MatrixBandPart"(%arg0, %arg1, %arg2) : (tensor<64x64xi64>, tensor<i64>, tensor<32xi64>) -> tensor<64x64xi64>
return %0 : tensor<64x64xi64>
}
// -----
//===--------------------------------------------------------------------===//
// tf.{|Stateful}PartitionedCall
//===--------------------------------------------------------------------===//

View File

@ -47,7 +47,7 @@ class TestModule(tf.Module):
# CHECK: func {{@[a-zA-Z_0-9]+}}(
# CHECK-SAME: %arg0: tensor<f32> {tf_saved_model.index_path = [0]},
# CHECK-SAME: %arg1: tensor<!tf.resource<tensor<f32>>> {tf_saved_model.bound_input = @[[VAR]]},
# CHECK-SAME: %arg2: tensor<f32> {tf_saved_model.bound_input = @[[CONST]]}) -> (
# CHECK-SAME: %arg2: tensor<!tf.resource<tensor<f32>>> {tf_saved_model.bound_input = @[[CONST]]}) -> (
# CHECK-SAME: tensor<f32> {tf_saved_model.index_path = []})
# CHECK-SAME: attributes {{.*}} tf_saved_model.exported_names = ["some_function"]
@tf.function(input_signature=[tf.TensorSpec([], tf.float32)])

View File

@ -1,53 +0,0 @@
// RUN: tf-opt -tf-saved-model-inline-global-tensors -split-input-file %s | FileCheck %s --dump-input=fail
module attributes {tf_saved_model.semantics} {
// Test case: Simple case of inlining.
// CHECK-NOT: tf_saved_model.global_tensor
"tf_saved_model.global_tensor"() { sym_name = "c", type = tensor<f32>, value = dense<1.0> : tensor<f32> } : () -> ()
// CHECK: func @f()
func @f(%arg0: tensor<f32> {tf_saved_model.bound_input = @c})
attributes {tf_saved_model.exported_names = ["f"]} {
// CHECK: "tf.Const"() {value = dense<1.000000e+00> : tensor<f32>}
return
}
}
// -----
module attributes {tf_saved_model.semantics} {
// Test case: Do not inline mutable global tensors.
// CHECK: tf_saved_model.global_tensor
"tf_saved_model.global_tensor"() { is_mutable, sym_name = "v", type = tensor<f32>, value = dense<1.0> : tensor<f32> } : () -> ()
// CHECK: func @f(%arg0: tensor<!tf.resource<tensor<f32>>> {tf_saved_model.bound_input = @v})
func @f(%arg0: tensor<!tf.resource<tensor<f32>>> {tf_saved_model.bound_input = @v})
attributes {tf_saved_model.exported_names = ["f"]} {
// CHECK-NOT: tf.Const
return
}
}
// -----
module attributes {tf_saved_model.semantics} {
// Test case: Sanity check handling of non-bound inputs.
// The pass shouldn't do anything in this case.
// CHECK: func @f(%arg0: tensor<f32> {tf_saved_model.index_path = [0]})
func @f(%arg0: tensor<f32> {tf_saved_model.index_path = [0]})
attributes {tf_saved_model.exported_names = ["f"]} {
// CHECK-NOT: tf.Const
return
}
}
// TODO: have an arg that isn't a bound input.

View File

@ -25,7 +25,7 @@ module attributes {tf_saved_model.semantics} {
// CHECK: func @__concrete_function_run_computation
func @__concrete_function_run_computation(
%arg0: tensor<f32> {tf_saved_model.index_path = [0, "foo"]},
%arg1: tensor<1x64xf32> {tf_saved_model.bound_input = @some_constant},
%arg1: tensor<!tf.resource<tensor<1x64xf32>>> {tf_saved_model.bound_input = @some_constant},
%arg2: tensor<!tf.resource<tensor<?x64xf32>>> {tf_saved_model.bound_input = @some_variable}
) -> (
tensor<f32> {tf_saved_model.index_path = [0, "bar"]}

View File

@ -244,7 +244,7 @@ module attributes {tf_saved_model.semantics} {
module attributes {tf_saved_model.semantics} {
"tf_saved_model.global_tensor"() { is_mutable, sym_name = "v", type = tensor<?xf32>, value = dense<1.> : tensor<1xf32> } : () -> ()
// expected-error@+1 {{mutable bound input with type 'tensor<f32>' expected to have type 'tensor<!tf.resource<tensor<?xf32>>>'}}
// expected-error@+1 {{bound input with type 'tensor<f32>' expected to have type 'tensor<!tf.resource<tensor<?xf32>>>'}}
func @f(%arg0: tensor<f32> {tf_saved_model.bound_input = @v})
attributes {tf_saved_model.exported_names = ["f"]} {
return
@ -253,18 +253,6 @@ module attributes {tf_saved_model.semantics} {
// -----
module attributes {tf_saved_model.semantics} {
"tf_saved_model.global_tensor"() { sym_name = "v", type = tensor<1xf32>, value = dense<1.> : tensor<1xf32> } : () -> ()
// expected-error@+1 {{bound input for immutable 'tf_saved_model.global_tensor' must match the global tensor's type}}
func @f(%arg0: tensor<!tf.resource<tensor<1xf32>>> {tf_saved_model.bound_input = @v})
attributes {tf_saved_model.exported_names = ["f"]} {
return
}
}
// -----
module attributes {tf_saved_model.semantics} {
// expected-error@+1 {{'type' attribute for immutable 'tf_saved_model.global_tensor' should have a static shape}}

View File

@ -6,19 +6,16 @@
module attributes {tf_saved_model.semantics} {
// Test case: Basic test of freezing.
// Test case: Basic test of marking immutable.
// CHECK: "tf_saved_model.global_tensor"() {
// CHECK-NOT: is_mutable
// CHECK-SAME: } : () -> ()
"tf_saved_model.global_tensor"() { is_mutable, sym_name = "v", type = tensor<f32>, value = dense<42.> : tensor<f32> } : () -> ()
// CHECK: func @f(%arg0: tensor<f32> {tf_saved_model.bound_input = @v})
func @f(%arg0: tensor<!tf.resource<tensor<f32>>> {tf_saved_model.bound_input = @v}) -> (tensor<f32> {tf_saved_model.index_path = []})
attributes {tf_saved_model.exported_names = ["f"]} {
// CHECK-NOT: tf.ReadVariableOp
%val = "tf.ReadVariableOp"(%arg0) : (tensor<!tf.resource<tensor<f32>>>) -> tensor<f32>
// CHECK: return %arg0
return %val : tensor<f32>
}
@ -28,18 +25,16 @@ module attributes {tf_saved_model.semantics} {
module attributes {tf_saved_model.semantics} {
// Test case: Don't freeze if the variable is mutated.
// Test case: Don't mark immutable if the variable is mutated.
// CHECK: "tf_saved_model.global_tensor"() {
// CHECK-SAME: is_mutable
// CHECK-SAME: } : () -> ()
"tf_saved_model.global_tensor"() { is_mutable, sym_name = "v", type = tensor<f32>, value = dense<42.> : tensor<f32> } : () -> ()
// CHECK: func @f(%arg0: tensor<!tf.resource<tensor<f32>>> {tf_saved_model.bound_input = @v})
func @f(%arg0: tensor<!tf.resource<tensor<f32>>> {tf_saved_model.bound_input = @v})
attributes {tf_saved_model.exported_names = ["f"]} {
%c0 = "tf.Const"() { value = dense<1.0> : tensor<f32> } : () -> tensor<f32>
// CHECK: tf.AssignVariableOp
"tf.AssignVariableOp"(%arg0, %c0) : (tensor<!tf.resource<tensor<f32>>>, tensor<f32>) -> ()
return
}
@ -50,14 +45,13 @@ module attributes {tf_saved_model.semantics} {
module attributes {tf_saved_model.semantics} {
// Test case: Don't freeze if the variable is exported.
// Test case: Don't mark immutable if the variable is exported.
// CHECK: "tf_saved_model.global_tensor"() {
// CHECK: is_mutable
// CHECK-SAME: } : () -> ()
"tf_saved_model.global_tensor"() { is_mutable, sym_name = "v", tf_saved_model.exported_names = ["v"], type = tensor<f32>, value = dense<42.> : tensor<f32> } : () -> ()
// CHECK: func @f(%arg0: tensor<!tf.resource<tensor<f32>>> {tf_saved_model.bound_input = @v})
func @f(%arg0: tensor<!tf.resource<tensor<f32>>> {tf_saved_model.bound_input = @v}) -> (tensor<f32> {tf_saved_model.index_path = []})
attributes {tf_saved_model.exported_names = ["f"]} {
%val = "tf.ReadVariableOp"(%arg0) : (tensor<!tf.resource<tensor<f32>>>) -> tensor<f32>
@ -71,7 +65,7 @@ module attributes {tf_saved_model.semantics} {
module attributes {tf_saved_model.semantics} {
// Test case: Check that a non-bound input is not modified.
// Test case: Check that a non-bound input is left unchanged.
// CHECK: func @g
func @g(%arg0: tensor<f32> {tf_saved_model.index_path = [0]}) -> (tensor<f32> {tf_saved_model.index_path = []})
@ -86,14 +80,16 @@ module attributes {tf_saved_model.semantics} {
module attributes {tf_saved_model.semantics} {
// Test case: Check that an immutable bound input isn't modified.
// Test case: Check that no change is made for a global tensor that is already
// immutable.
"tf_saved_model.global_tensor"() { sym_name = "c", type = tensor<f32>, value = dense<42.> : tensor<f32> } : () -> ()
// CHECK: func @h(%arg0: tensor<f32> {tf_saved_model.bound_input = @c})
func @h(%arg0: tensor<f32> {tf_saved_model.bound_input = @c}) -> (tensor<f32> {tf_saved_model.index_path = []})
// CHECK: func @h(%arg0: tensor<!tf.resource<tensor<f32>>> {tf_saved_model.bound_input = @c})
func @h(%arg0: tensor<!tf.resource<tensor<f32>>> {tf_saved_model.bound_input = @c})
attributes {tf_saved_model.exported_names = ["h"]} {
return %arg0 : tensor<f32>
%0 = "tf.ReadVariableOp"(%arg0) : (tensor<!tf.resource<tensor<f32>>>) -> tensor<f32>
return
}
}
@ -134,7 +130,7 @@ module attributes {tf_saved_model.semantics} {
"tf_saved_model.global_tensor"() { sym_name = "c", type = tensor<f32>, value = dense<42.> : tensor<f32> } : () -> ()
// CHECK: func @f()
func @f(%arg0: tensor<f32> {tf_saved_model.bound_input = @c})
func @f(%arg0: tensor<!tf.resource<tensor<f32>>> {tf_saved_model.bound_input = @c})
attributes {tf_saved_model.exported_names = ["f"]} {
return
}

View File

@ -102,18 +102,19 @@ module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, pr
func @main(%arg0: tensor<*x!tf.resource<tensor<f32>>> {tf.device = "/device:TPU:0"},
%arg1: tensor<*x!tf.resource<tensor<f32>>> {tf.device = "/device:TPU:1"},
%arg2: tensor<*x!tf.resource<tensor<3x3x1x32xf32>>> {tf.device = "/device:TPU:0"},
%arg3: tensor<*x!tf.resource<tensor<3x3x1x32xf32>>> {tf.device = "/device:TPU:1"}) {
%arg3: tensor<*x!tf.resource<tensor<3x3x1x32xf32>>> {tf.device = "/device:TPU:1"},
%arg4: tensor<*x!tf.resource<tensor<f32>>> {tf.device = "/device:TPU:0"},
%arg5: tensor<*x!tf.resource<tensor<f32>>> {tf.device = "/device:TPU:1"}) {
%0 = "tf.Const"() {value = dense<100> : tensor<i32>} : () -> tensor<i32>
%1:5 = "tf.While"(%0, %arg0, %arg1, %arg2, %arg3)
{T = ["tfdtype$DT_INT32", "tfdtype$DT_RESOURCE",
"tfdtype$DT_RESOURCE", "tfdtype$DT_RESOURCE",
"tfdtype$DT_RESOURCE"], body = @while_body_7560,
cond = @while_cond_7550, device = "", is_stateless = false,
output_shapes = ["tfshape$", "tfshape$", "tfshape$", "tfshape$", "tfshape$"]}
%1:7 = "tf.While"(%0, %arg0, %arg1, %arg2, %arg3, %arg4, %arg5)
{body = @while_body_7560,
cond = @while_cond_7550, device = "", is_stateless = false}
: (tensor<i32>, tensor<*x!tf.resource<tensor<f32>>>, tensor<*x!tf.resource<tensor<f32>>>,
tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>, tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>)
tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>, tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>,
tensor<*x!tf.resource<tensor<f32>>>, tensor<*x!tf.resource<tensor<f32>>>)
-> (tensor<i32>, tensor<*x!tf.resource<tensor<f32>>>, tensor<*x!tf.resource<tensor<f32>>>,
tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>, tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>)
tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>, tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>,
tensor<*x!tf.resource<tensor<f32>>>, tensor<*x!tf.resource<tensor<f32>>>)
return
}
// CHECK: func @while_body_7560
@ -122,9 +123,12 @@ module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, pr
%arg1: tensor<*x!tf.resource<tensor<f32>>> {tf.device = "/device:TPU:0"},
%arg2: tensor<*x!tf.resource<tensor<f32>>> {tf.device = "/device:TPU:1"},
%arg3: tensor<*x!tf.resource<tensor<3x3x1x32xf32>>> {tf.device = "/device:TPU:0"},
%arg4: tensor<*x!tf.resource<tensor<3x3x1x32xf32>>> {tf.device = "/device:TPU:1"})
%arg4: tensor<*x!tf.resource<tensor<3x3x1x32xf32>>> {tf.device = "/device:TPU:1"},
%arg5: tensor<*x!tf.resource<tensor<f32>>> {tf.device = "/device:TPU:0"},
%arg6: tensor<*x!tf.resource<tensor<f32>>> {tf.device = "/device:TPU:1"})
-> (tensor<i32>, tensor<*x!tf.resource<tensor<f32>>>, tensor<*x!tf.resource<tensor<f32>>>,
tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>, tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>) {
tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>, tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>,
tensor<*x!tf.resource<tensor<f32>>>, tensor<*x!tf.resource<tensor<f32>>>) {
%0 = "tf.Const"() {value = dense<-1> : tensor<i32>} : () -> tensor<i32>
%1 = "tf.AddV2"(%arg0, %0) {T = i32, device = ""} : (tensor<i32>, tensor<i32>) -> tensor<i32>
%2:2 = "tf._TPUCompileMlir"() {
@ -133,27 +137,33 @@ module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, pr
metadata = "\0A\0E\08\01\18\01\22\08\08\01\1A\01\01\22\01\00\0A \08\01\12\10\12\02\08\03\12\02\08\03\12\02\08\01\12\02\08 \18\01\22\08\08\01\1A\01\01\22\01\00\12\0A\0A\08\08\01\1A\01\01\22\01\00\12\0A\0A\08\08\01\1A\01\01\22\01\00\18\02 \01",
mlir_module = "..."} : () -> (tensor<!tf.string>, tensor<!tf.string>)
"tf.TPUCompileSucceededAssert"(%2#0) : (tensor<!tf.string>) -> ()
%new_var = "tf._UnknownOp0_"(%arg3) : (tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>) -> tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>
%id0 = "tf.Identity"(%arg3) : (tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>) -> tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>
"tf._Unknown_"(%id0) : (tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>) -> ()
%newvar = "tf._SomeOp"() : () -> tensor<*x!tf.resource<tensor<f32>>>
tf_device.replicate([%arg1, %arg2] as %arg30: tensor<*x!tf.resource<tensor<f32>>>,
[%new_var, %arg4] as %arg31: tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>)
[%arg3, %arg4] as %arg31: tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>,
[%newvar, %arg6] as %arg32: tensor<*x!tf.resource<tensor<f32>>>)
{_mirrored_variable_indices = [0, 1], devices = {TPU_REPLICATED_CORE_0 = ["/device:TPU:0", "/device:TPU:1"]}, n = 2 : i32} {
// %arg30 is used in the cond function, and %arg31 is not pass-through of
// while inputs, so neither should be formatted.
"tf.TPUExecuteAndUpdateVariables"(%arg30, %arg31, %2#1)
// %arg30 is used in the cond function, %arg31 has other uses (%id0), and
// %arg32 is not a pass-through.
"tf.TPUExecuteAndUpdateVariables"(%arg30, %arg31, %arg32, %2#1)
{device_var_reads_indices = [0, 1], device_var_updates_indices = [0, 1]}
: (tensor<*x!tf.resource<tensor<f32>>>, tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>, tensor<!tf.string>) -> ()
: (tensor<*x!tf.resource<tensor<f32>>>, tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>,
tensor<*x!tf.resource<tensor<f32>>>, tensor<!tf.string>) -> ()
tf_device.return
}
return %1, %arg1, %arg2, %arg3, %arg4 : tensor<i32>, tensor<*x!tf.resource<tensor<f32>>>,
return %1, %arg1, %arg2, %arg3, %arg4, %arg5, %arg6 : tensor<i32>, tensor<*x!tf.resource<tensor<f32>>>,
tensor<*x!tf.resource<tensor<f32>>>, tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>,
tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>
tensor<*x!tf.resource<tensor<3x3x1x32xf32>>>, tensor<*x!tf.resource<tensor<f32>>>, tensor<*x!tf.resource<tensor<f32>>>
}
// CHECK-LABEL: func @while_cond_7550
func @while_cond_7550(%arg0: tensor<i32>,
%arg1: tensor<*x!tf.resource<tensor<f32>>> {tf.device = "/device:TPU:0"},
%arg2: tensor<*x!tf.resource<tensor<f32>>> {tf.device = "/device:TPU:1"},
%arg3: tensor<*x!tf.resource<tensor<3x3x1x32xf32>>> {tf.device = "/device:TPU:0"},
%arg4: tensor<*x!tf.resource<tensor<3x3x1x32xf32>>> {tf.device = "/device:TPU:1"})
%arg4: tensor<*x!tf.resource<tensor<3x3x1x32xf32>>> {tf.device = "/device:TPU:1"},
%arg5: tensor<*x!tf.resource<tensor<f32>>> {tf.device = "/device:TPU:0"},
%arg6: tensor<*x!tf.resource<tensor<f32>>> {tf.device = "/device:TPU:1"})
-> tensor<i1> {
%0 = "tf.Const"() {value = dense<0> : tensor<i32>} : () -> tensor<i32>
%1 = "tf.GreaterEqual"(%arg0, %0) {T = i32, device = ""} : (tensor<i32>, tensor<i32>) -> tensor<i1>

View File

@ -891,35 +891,3 @@ module attributes {tf.versions = {producer = 888 : i32}, tf.devices = ["/job:wor
return %0 : tensor<?xi32>
}
}
// -----
// Tests simple case of launch_func on TPU with replication with multiple logical cores.
module attributes {tf.versions = {producer = 888 : i32}, tf.devices = ["/job:worker/replica:0/task:0/device:CPU:0", "/job:worker/replica:0/task:0/device:TPU_SYSTEM:0", "/job:worker/replica:0/task:0/device:TPU:0", "/job:worker/replica:0/task:0/device:TPU:1"]} {
// CHECK-LABEL: func @replicated_tpu_launch_func_with_multiple_logical_cores
func @replicated_tpu_launch_func_with_multiple_logical_cores(%arg0: tensor<?xi32>) -> tensor<?xi32> {
%0 = "tf.A"(%arg0) : (tensor<?xi32>) -> tensor<?xi32>
// CHECK: %[[REPLICATE:[0-9]*]]:2 = tf_device.replicate
// CHECK-SAME: ([%[[A_OUTPUT]], %[[ARG_0]]] as %[[RI_0:[a-z0-9]*]]: tensor<?xi32>)
// CHECK-SAME: n = 2
%1:2 = tf_device.replicate([%0, %arg0] as %ri_0: tensor<?xi32>) {n = 2 : i32} {
// CHECK: %[[COMPILE_OUTPUT:[0-9]*]]:2 = "tf._TPUCompileMlir"
// CHECK: "tf_device.parallel_execute"()
// CHECK-NEXT: %[[LAUNCH:[0-9]*]] = "tf_device.launch"() ( {
// CHECK-NEXT: %[[EXECUTE_OUTPUT:[0-9]*]] = "tf.TPUExecute"(%[[ARG_1]], %[[COMPILE_OUTPUT]]#1)
// CHECK: %[[LAUNCH:[0-9]*]] = "tf_device.launch"() ( {
// CHECK-NEXT: %[[EXECUTE_OUTPUT:[0-9]*]] = "tf.TPUExecute"(%[[ARG_1]], %[[COMPILE_OUTPUT]]#1)
%2 = "tf_device.launch_func"(%ri_0) {_tpu_replicate = "cluster0", device = "", func = @tpu0_func, num_cores_per_replica = 2, step_marker_location = "STEP_MARK_AT_TOP_LEVEL_WHILE_LOOP", padding_map = ["\08\01\10\02\18\03"]} : (tensor<?xi32>) -> tensor<?xi32>
tf_device.return %2 : tensor<?xi32>
}
%2 = "tf.C"(%1#1) : (tensor<?xi32>) -> tensor<?xi32>
return %2 : tensor<?xi32>
}
func @tpu0_func(%arg0: tensor<?xi32>) -> tensor<?xi32> {
%0 = "tf.B"(%arg0) : (tensor<?xi32>) -> tensor<?xi32>
return %0 : tensor<?xi32>
}
}

View File

@ -17,7 +17,7 @@ limitations under the License.
// `tf_device.launch` with equivalent `tf_device.launch_func` operations.
#include "llvm/ADT/SmallVector.h"
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Block.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project

View File

@ -13,7 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
include "mlir/IR/OpBase.td"
include "mlir/Dialect/StandardOps/Ops.td"
include "mlir/Dialect/StandardOps/IR/Ops.td"
include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.td"
// Here, the element type can be any integer or float type. But, note that only

View File

@ -17,7 +17,7 @@ limitations under the License.
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project
#include "mlir/IR/Visitors.h" // TF:llvm-project

View File

@ -16,7 +16,7 @@ limitations under the License.
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project
#include "mlir/IR/SymbolTable.h" // TF:llvm-project

View File

@ -31,7 +31,7 @@ limitations under the License.
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "mlir/Analysis/LoopAnalysis.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Block.h" // TF:llvm-project
#include "mlir/IR/MLIRContext.h" // TF:llvm-project

View File

@ -16,7 +16,7 @@ limitations under the License.
// This transformation pass transforms functional control flow operations in the
// standard TensorFlow dialect to MLIR Control Flow Graph (CFG) form.
#include "mlir/Dialect/StandardOps/Ops.h" // TF:llvm-project
#include "mlir/Dialect/StandardOps/IR/Ops.h" // TF:llvm-project
#include "mlir/IR/Attributes.h" // TF:llvm-project
#include "mlir/IR/Builders.h" // TF:llvm-project
#include "mlir/IR/Operation.h" // TF:llvm-project

Some files were not shown because too many files have changed in this diff Show More