add BiasAddGradient
This commit is contained in:
parent
74ecc3ec25
commit
7b9e2ff862
@ -1,5 +1,21 @@
|
||||
load("//tensorflow:tensorflow.bzl", "filegroup")
|
||||
load("//tensorflow/core/platform:rules_cc.bzl", "cc_library")
|
||||
load(
|
||||
"//tensorflow:tensorflow.bzl",
|
||||
"if_libtpu",
|
||||
"tf_cc_test",
|
||||
"tf_copts",
|
||||
"tf_cuda_cc_test",
|
||||
"tf_cuda_library",
|
||||
)
|
||||
load(
|
||||
"//tensorflow/core/platform:build_config.bzl",
|
||||
"tf_kernel_tests_linkstatic",
|
||||
)
|
||||
load(
|
||||
"//tensorflow/core/platform:build_config_root.bzl",
|
||||
"tf_cuda_tests_tags",
|
||||
)
|
||||
|
||||
# Library of gradient functions.
|
||||
package(
|
||||
@ -95,3 +111,69 @@ filegroup(
|
||||
"//tensorflow/python:__pkg__",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "nn_grad_testutil",
|
||||
srcs = [
|
||||
"nn_grad_testutil.cc",
|
||||
],
|
||||
hdrs = [
|
||||
"nn_grad_testutil.h",
|
||||
],
|
||||
visibility = [
|
||||
"//tensorflow:internal",
|
||||
],
|
||||
deps = [
|
||||
"//tensorflow/c/eager:abstract_tensor_handle",
|
||||
"//tensorflow/c/eager:c_api_experimental",
|
||||
"//tensorflow/c/eager:c_api_unified_internal",
|
||||
"//tensorflow/c/eager:gradients_internal",
|
||||
"//tensorflow/c/eager:gradients_util",
|
||||
"//tensorflow/c/eager:tape",
|
||||
"//tensorflow/c/experimental/gradients/tape:tape_context",
|
||||
"//tensorflow/c/experimental/ops:array_ops",
|
||||
"//tensorflow/c/experimental/ops:math_ops",
|
||||
"//tensorflow/c/experimental/ops:nn_ops",
|
||||
"//tensorflow/core/lib/llvm_rtti",
|
||||
"//tensorflow/core/platform:status",
|
||||
"@com_google_absl//absl/container:flat_hash_set",
|
||||
"@com_google_absl//absl/types:span",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cuda_cc_test(
|
||||
name = "nn_grad_test",
|
||||
size = "small",
|
||||
srcs = [
|
||||
"nn_grad_test.cc",
|
||||
],
|
||||
args = ["--heap_check=local"],
|
||||
linkstatic = tf_kernel_tests_linkstatic(),
|
||||
tags = tf_cuda_tests_tags() + ["nomac"],
|
||||
deps = [
|
||||
"//tensorflow/c:c_api",
|
||||
"//tensorflow/c:c_test_util",
|
||||
"//tensorflow/c:tf_status_helper",
|
||||
"//tensorflow/c/eager:abstract_context",
|
||||
"//tensorflow/c/eager:abstract_tensor_handle",
|
||||
"//tensorflow/c/eager:c_api_experimental",
|
||||
"//tensorflow/c/eager:c_api_test_util",
|
||||
"//tensorflow/c/eager:c_api_unified_internal",
|
||||
"//tensorflow/c/eager:gradients_internal",
|
||||
"//tensorflow/c/eager:unified_api_testutil",
|
||||
"//tensorflow/c/experimental/gradients:nn_grad",
|
||||
"//tensorflow/c/experimental/gradients:nn_grad_testutil",
|
||||
"//tensorflow/c/experimental/gradients/tape:tape_context",
|
||||
"//tensorflow/c/experimental/ops",
|
||||
"//tensorflow/cc/profiler",
|
||||
"//tensorflow/compiler/mlir/tensorflow/c:mlir_c_api_registration",
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core/lib/llvm_rtti",
|
||||
"@com_google_absl//absl/container:flat_hash_set",
|
||||
"@com_google_absl//absl/strings",
|
||||
"@com_google_absl//absl/types:span",
|
||||
],
|
||||
)
|
||||
|
@ -25,6 +25,7 @@ limitations under the License.
|
||||
#include "tensorflow/core/platform/errors.h"
|
||||
|
||||
using std::vector;
|
||||
using tensorflow::ops::BiasAddGrad;
|
||||
using tensorflow::ops::Mul;
|
||||
using tensorflow::ops::ReluGrad;
|
||||
|
||||
@ -110,6 +111,48 @@ class SparseSoftmaxCrossEntropyWithLogitsGradientFunction
|
||||
vector<AbstractTensorHandle*> forward_outputs;
|
||||
};
|
||||
|
||||
// TODO(vnvo2409): Add python test
|
||||
class BiasAddGradientFunction : public GradientFunction {
|
||||
public:
|
||||
explicit BiasAddGradientFunction(AttrBuilder f_attrs)
|
||||
: forward_attrs(f_attrs) {}
|
||||
|
||||
Status Compute(Context* ctx, const IncomingGradients& grad_inputs,
|
||||
vector<AbstractTensorHandle*>* grad_outputs) override {
|
||||
/* Given upstream grad U and a BiasAdd: A + bias, the gradients are:
|
||||
*
|
||||
* dA = U
|
||||
* dbias = reduceSum(U, dims = channel_dim)
|
||||
*/
|
||||
|
||||
AbstractTensorHandle* upstream_grad = grad_inputs[0];
|
||||
DCHECK(upstream_grad);
|
||||
grad_outputs->resize(2);
|
||||
|
||||
// Recover data format from forward pass for gradient.
|
||||
std::string data_format;
|
||||
forward_attrs.Get("data_format", &data_format);
|
||||
|
||||
// Grad for A
|
||||
(*grad_outputs)[0] = upstream_grad;
|
||||
(*grad_outputs)[0]->Ref();
|
||||
|
||||
// Grad for bias
|
||||
vector<AbstractTensorHandle*> bias_add_grad_outputs(1);
|
||||
std::string name = "bias_add_grad";
|
||||
TF_RETURN_IF_ERROR(BiasAddGrad(ctx->ctx, {upstream_grad},
|
||||
absl::MakeSpan(bias_add_grad_outputs),
|
||||
data_format.c_str(), name.c_str()));
|
||||
|
||||
(*grad_outputs)[1] = bias_add_grad_outputs[0];
|
||||
return Status::OK();
|
||||
}
|
||||
~BiasAddGradientFunction() override {}
|
||||
|
||||
private:
|
||||
AttrBuilder forward_attrs;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
BackwardFunction* ReluRegisterer(const ForwardOperation& op) {
|
||||
@ -129,5 +172,14 @@ BackwardFunction* SparseSoftmaxCrossEntropyWithLogitsRegisterer(
|
||||
return new BackwardFunction(gradient_function, default_gradients);
|
||||
}
|
||||
|
||||
BackwardFunction* BiasAddRegisterer(const ForwardOperation& op) {
|
||||
// For ops with a single output, the gradient function is not called if there
|
||||
// is no incoming gradient. So we do not need to worry about creating zeros
|
||||
// grads in this case.
|
||||
auto gradient_function = new BiasAddGradientFunction(op.attrs);
|
||||
auto default_gradients = new PassThroughDefaultGradients(op);
|
||||
return new BackwardFunction(gradient_function, default_gradients);
|
||||
}
|
||||
|
||||
} // namespace gradients
|
||||
} // namespace tensorflow
|
||||
|
@ -22,6 +22,7 @@ namespace gradients {
|
||||
BackwardFunction* ReluRegisterer(const ForwardOperation& op);
|
||||
BackwardFunction* SparseSoftmaxCrossEntropyWithLogitsRegisterer(
|
||||
const ForwardOperation& op);
|
||||
BackwardFunction* BiasAddRegisterer(const ForwardOperation& op);
|
||||
} // namespace gradients
|
||||
} // namespace tensorflow
|
||||
|
||||
|
154
tensorflow/c/experimental/gradients/nn_grad_test.cc
Normal file
154
tensorflow/c/experimental/gradients/nn_grad_test.cc
Normal file
@ -0,0 +1,154 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/c/experimental/gradients/nn_grad.h"
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "absl/container/flat_hash_set.h"
|
||||
#include "absl/types/span.h"
|
||||
#include "tensorflow/c/eager/abstract_context.h"
|
||||
#include "tensorflow/c/eager/abstract_tensor_handle.h"
|
||||
#include "tensorflow/c/eager/c_api_experimental.h"
|
||||
#include "tensorflow/c/eager/c_api_test_util.h"
|
||||
#include "tensorflow/c/eager/c_api_unified_experimental.h"
|
||||
#include "tensorflow/c/eager/c_api_unified_experimental_internal.h"
|
||||
#include "tensorflow/c/eager/gradients.h"
|
||||
#include "tensorflow/c/eager/gradients_internal.h"
|
||||
#include "tensorflow/c/eager/gradients_util.h"
|
||||
#include "tensorflow/c/experimental/gradients/nn_grad_testutil.h"
|
||||
#include "tensorflow/c/experimental/gradients/tape/tape_context.h"
|
||||
#include "tensorflow/c/experimental/ops/nn_ops.h"
|
||||
#include "tensorflow/c/tf_status_helper.h"
|
||||
#include "tensorflow/c/tf_tensor.h"
|
||||
#include "tensorflow/core/lib/llvm_rtti/llvm_rtti.h"
|
||||
#include "tensorflow/core/platform/errors.h"
|
||||
#include "tensorflow/core/platform/test.h"
|
||||
|
||||
namespace tensorflow {
|
||||
namespace gradients {
|
||||
namespace internal {
|
||||
namespace {
|
||||
using std::vector;
|
||||
using tensorflow::TF_StatusPtr;
|
||||
using tracing::TracingOperation;
|
||||
|
||||
class CppGradients
|
||||
: public ::testing::TestWithParam<std::tuple<const char*, bool, bool>> {
|
||||
protected:
|
||||
void SetUp() override {
|
||||
TF_StatusPtr status(TF_NewStatus());
|
||||
TF_SetTracingImplementation(std::get<0>(GetParam()), status.get());
|
||||
Status s = StatusFromTF_Status(status.get());
|
||||
CHECK_EQ(errors::OK, s.code()) << s.error_message();
|
||||
}
|
||||
};
|
||||
|
||||
Status RegisterGradients(GradientRegistry* registry) {
|
||||
TF_RETURN_IF_ERROR(registry->Register("BiasAdd", BiasAddRegisterer));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
TEST_P(CppGradients, TestBiasAddGrad) {
|
||||
if (std::get<0>(GetParam()) == "mlir" && std::get<2>(GetParam()) == 0) {
|
||||
GTEST_SKIP() << "SetAttrString has not been implemented yet.\n";
|
||||
}
|
||||
std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
|
||||
TF_NewStatus(), TF_DeleteStatus);
|
||||
AbstractContextPtr ctx;
|
||||
{
|
||||
AbstractContext* ctx_raw = nullptr;
|
||||
Status s =
|
||||
BuildImmediateExecutionContext(std::get<1>(GetParam()), &ctx_raw);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
ctx.reset(ctx_raw);
|
||||
}
|
||||
|
||||
float A_vals[] = {1.0f, 2.0f, 3.0f, 4.0f};
|
||||
int64_t A_dims[] = {2, 2};
|
||||
float Bias_vals[] = {2.0f, 3.0f};
|
||||
int64_t Bias_dims[] = {2};
|
||||
|
||||
AbstractTensorHandlePtr A =
|
||||
GetTensorHandleUtilFloat(ctx.get(), A_vals, A_dims, 2);
|
||||
AbstractTensorHandlePtr B =
|
||||
GetTensorHandleUtilFloat(ctx.get(), Bias_vals, Bias_dims, 1);
|
||||
|
||||
GradientRegistry registry;
|
||||
Status s = RegisterGradients(®istry);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
|
||||
/* Pseudo-code:
|
||||
*
|
||||
* tape.watch(A)
|
||||
* tape.watch(B)
|
||||
* Y = BiasAdd(A, Bias)
|
||||
* outputs = tape.gradient(Y, [A, Bias])
|
||||
*/
|
||||
std::vector<AbstractTensorHandle*> outputs(2);
|
||||
s = RunModel(BiasAddGradModel, ctx.get(), {A.get(), B.get()},
|
||||
absl::MakeSpan(outputs),
|
||||
/*use_function=*/!std::get<2>(GetParam()), registry);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
|
||||
TF_Tensor* dA_tensor;
|
||||
s = GetValue(outputs[0], &dA_tensor);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
|
||||
float result_data_dA[4] = {0};
|
||||
memcpy(&result_data_dA[0], TF_TensorData(dA_tensor),
|
||||
TF_TensorByteSize(dA_tensor));
|
||||
|
||||
float expected_dA[4] = {1.0f, 1.0f, 1.0f, 1.0f};
|
||||
float tolerance = 1e-3;
|
||||
for (int j = 0; j < 4; j++) {
|
||||
ASSERT_NEAR(result_data_dA[j], expected_dA[j], tolerance);
|
||||
}
|
||||
|
||||
TF_Tensor* dBias_tensor;
|
||||
s = GetValue(outputs[1], &dBias_tensor);
|
||||
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
|
||||
|
||||
float result_data_dBias[2] = {0};
|
||||
memcpy(&result_data_dBias[0], TF_TensorData(dBias_tensor),
|
||||
TF_TensorByteSize(dBias_tensor));
|
||||
|
||||
float expected_dBias[2] = {2.0f, 2.0f};
|
||||
for (int j = 0; j < 2; j++) {
|
||||
ASSERT_NEAR(result_data_dBias[j], expected_dBias[j], tolerance);
|
||||
}
|
||||
|
||||
outputs[0]->Unref();
|
||||
outputs[1]->Unref();
|
||||
TF_DeleteTensor(dA_tensor);
|
||||
TF_DeleteTensor(dBias_tensor);
|
||||
}
|
||||
|
||||
#ifdef PLATFORM_GOOGLE
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
UnifiedCAPI, CppGradients,
|
||||
::testing::Combine(::testing::Values("graphdef", "mlir"),
|
||||
/*tfrt*/ ::testing::Values(false),
|
||||
/*executing_eagerly*/ ::testing::Values(true, false)));
|
||||
#else
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
UnifiedCAPI, CppGradients,
|
||||
::testing::Combine(::testing::Values("graphdef", "mlir"),
|
||||
/*tfrt*/ ::testing::Values(false),
|
||||
/*executing_eagerly*/ ::testing::Values(true, false)));
|
||||
#endif
|
||||
} // namespace
|
||||
} // namespace internal
|
||||
} // namespace gradients
|
||||
} // namespace tensorflow
|
71
tensorflow/c/experimental/gradients/nn_grad_testutil.cc
Normal file
71
tensorflow/c/experimental/gradients/nn_grad_testutil.cc
Normal file
@ -0,0 +1,71 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/c/experimental/gradients/nn_grad_testutil.h"
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "absl/types/span.h"
|
||||
#include "tensorflow/c/eager/abstract_tensor_handle.h"
|
||||
#include "tensorflow/c/eager/c_api_experimental.h"
|
||||
#include "tensorflow/c/eager/c_api_unified_experimental.h"
|
||||
#include "tensorflow/c/eager/c_api_unified_experimental_internal.h"
|
||||
#include "tensorflow/c/eager/gradients.h"
|
||||
#include "tensorflow/c/eager/gradients_internal.h"
|
||||
#include "tensorflow/c/experimental/gradients/tape/tape_context.h"
|
||||
#include "tensorflow/c/experimental/ops/nn_ops.h"
|
||||
#include "tensorflow/core/lib/llvm_rtti/llvm_rtti.h"
|
||||
#include "tensorflow/core/platform/status.h"
|
||||
|
||||
namespace tensorflow {
|
||||
namespace gradients {
|
||||
namespace internal {
|
||||
|
||||
// Computes
|
||||
// y = BiasAdd(inputs[0], inputs[1])
|
||||
// return grad(y, {inputs[0], inputs[1]})
|
||||
Status BiasAddGradModel(AbstractContext* ctx,
|
||||
absl::Span<AbstractTensorHandle* const> inputs,
|
||||
absl::Span<AbstractTensorHandle*> outputs,
|
||||
const GradientRegistry& registry) {
|
||||
TapeVSpace vspace(ctx);
|
||||
auto tape = new Tape(/*persistent=*/false);
|
||||
tape->Watch(ToId(inputs[0])); // Watch x.
|
||||
tape->Watch(ToId(inputs[1])); // Watch y.
|
||||
std::vector<AbstractTensorHandle*> bias_add_outputs(1);
|
||||
AbstractContextPtr tape_ctx(new TapeContext(ctx, tape, registry));
|
||||
TF_RETURN_IF_ERROR(ops::BiasAdd(tape_ctx.get(), inputs,
|
||||
absl::MakeSpan(bias_add_outputs), "BiasAdd"));
|
||||
std::unordered_map<tensorflow::int64, TapeTensor>
|
||||
source_tensors_that_are_targets;
|
||||
|
||||
std::vector<AbstractTensorHandle*> out_grads;
|
||||
TF_RETURN_IF_ERROR(tape->ComputeGradient(
|
||||
vspace, /*target_tensor_ids=*/{ToId(bias_add_outputs[0])},
|
||||
/*source_tensor_ids=*/{ToId(inputs[0]), ToId(inputs[1])},
|
||||
source_tensors_that_are_targets,
|
||||
/*output_gradients=*/{}, &out_grads,
|
||||
/*build_default_zeros_grads=*/false));
|
||||
for (auto bias_add_output : bias_add_outputs) {
|
||||
bias_add_output->Unref();
|
||||
}
|
||||
outputs[0] = out_grads[0];
|
||||
outputs[1] = out_grads[1];
|
||||
delete tape;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
} // namespace gradients
|
||||
} // namespace tensorflow
|
46
tensorflow/c/experimental/gradients/nn_grad_testutil.h
Normal file
46
tensorflow/c/experimental/gradients/nn_grad_testutil.h
Normal file
@ -0,0 +1,46 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_C_EXPERIMENTAL_GRADIENTS_NN_GRAD_TESTUTIL_H_
|
||||
#define TENSORFLOW_C_EXPERIMENTAL_GRADIENTS_NN_GRAD_TESTUTIL_H_
|
||||
#include <memory>
|
||||
|
||||
#include "absl/types/span.h"
|
||||
#include "tensorflow/c/eager/abstract_tensor_handle.h"
|
||||
#include "tensorflow/c/eager/c_api_experimental.h"
|
||||
#include "tensorflow/c/eager/c_api_unified_experimental.h"
|
||||
#include "tensorflow/c/eager/c_api_unified_experimental_internal.h"
|
||||
#include "tensorflow/c/eager/gradients.h"
|
||||
#include "tensorflow/c/eager/gradients_internal.h"
|
||||
#include "tensorflow/c/experimental/ops/nn_ops.h"
|
||||
#include "tensorflow/core/lib/llvm_rtti/llvm_rtti.h"
|
||||
#include "tensorflow/core/platform/status.h"
|
||||
|
||||
namespace tensorflow {
|
||||
namespace gradients {
|
||||
namespace internal {
|
||||
|
||||
// Computes
|
||||
// y = BiasAdd(inputs[0], inputs[1])
|
||||
// return grad(y, {inputs[0], inputs[1]})
|
||||
Status BiasAddGradModel(AbstractContext* ctx,
|
||||
absl::Span<AbstractTensorHandle* const> inputs,
|
||||
absl::Span<AbstractTensorHandle*> outputs,
|
||||
const GradientRegistry& registry);
|
||||
|
||||
} // namespace internal
|
||||
} // namespace gradients
|
||||
} // namespace tensorflow
|
||||
|
||||
#endif // TENSORFLOW_C_EXPERIMENTAL_GRADIENTS_NN_GRAD_TESTUTIL_H_
|
@ -69,5 +69,38 @@ Status Relu(AbstractContext* ctx,
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status BiasAdd(AbstractContext* ctx,
|
||||
absl::Span<AbstractTensorHandle* const> inputs,
|
||||
absl::Span<AbstractTensorHandle*> outputs, const char* name) {
|
||||
AbstractOperationPtr bias_add_op(ctx->CreateOperation());
|
||||
TF_RETURN_IF_ERROR(
|
||||
bias_add_op->Reset("BiasAdd", /*raw_device_name=*/nullptr));
|
||||
TF_RETURN_IF_ERROR(MaybeSetOpName(bias_add_op.get(), name));
|
||||
TF_RETURN_IF_ERROR(bias_add_op->AddInput(inputs[0])); // tensor input
|
||||
TF_RETURN_IF_ERROR(bias_add_op->AddInput(inputs[1])); // bias
|
||||
|
||||
int num_retvals = 1;
|
||||
TF_RETURN_IF_ERROR(bias_add_op->Execute(outputs, &num_retvals));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Computes Bias Add gradient given upstream grads
|
||||
Status BiasAddGrad(AbstractContext* ctx,
|
||||
absl::Span<AbstractTensorHandle* const> inputs,
|
||||
absl::Span<AbstractTensorHandle*> outputs,
|
||||
const char* data_format, const char* name) {
|
||||
AbstractOperationPtr bias_add_grad_op(ctx->CreateOperation());
|
||||
TF_RETURN_IF_ERROR(
|
||||
bias_add_grad_op->Reset("BiasAddGrad", /*raw_device_name=*/nullptr));
|
||||
TF_RETURN_IF_ERROR(MaybeSetOpName(bias_add_grad_op.get(), name));
|
||||
TF_RETURN_IF_ERROR(bias_add_grad_op->SetAttrString("data_format", data_format,
|
||||
strlen(data_format)));
|
||||
TF_RETURN_IF_ERROR(bias_add_grad_op->AddInput(inputs[0]));
|
||||
|
||||
int num_retvals = 1;
|
||||
TF_RETURN_IF_ERROR(bias_add_grad_op->Execute(outputs, &num_retvals));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
} // namespace ops
|
||||
} // namespace tensorflow
|
||||
|
@ -34,6 +34,15 @@ Status Relu(AbstractContext* ctx,
|
||||
absl::Span<AbstractTensorHandle* const> inputs,
|
||||
absl::Span<AbstractTensorHandle*> outputs, const char* name);
|
||||
|
||||
Status BiasAdd(AbstractContext* ctx,
|
||||
absl::Span<AbstractTensorHandle* const> inputs,
|
||||
absl::Span<AbstractTensorHandle*> outputs, const char* name);
|
||||
|
||||
Status BiasAddGrad(AbstractContext* ctx,
|
||||
absl::Span<AbstractTensorHandle* const> inputs,
|
||||
absl::Span<AbstractTensorHandle*> outputs,
|
||||
const char* data_format, const char* name);
|
||||
|
||||
} // namespace ops
|
||||
} // namespace tensorflow
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user