Internal change

PiperOrigin-RevId: 308757298
Change-Id: I9ec9dfdd236a1ed796f82fd77e0afee777ca626d
This commit is contained in:
A. Unique TensorFlower 2020-04-27 21:23:58 -07:00 committed by TensorFlower Gardener
parent fb7ea8f0e6
commit 7b357dd06b
2 changed files with 29 additions and 8 deletions

View File

@ -305,8 +305,9 @@ class Conv(Layer):
"""Recreate conv_op if necessary.
Check if the input_shape in call() is different from that in build().
For the values that are not None, if they are different, recreate
the _convolution_op to avoid the stateful behavior.
If the most-specific input shape describing the build and call shapes is not
equal to the shape we currently built with, then we need to rebuild the
_convolution_op to avoid incorrect behavior.
Args:
inputs: The input data to call() method.
@ -315,12 +316,10 @@ class Conv(Layer):
`True` or `False` to indicate whether to recreate the conv_op.
"""
call_input_shape = inputs.get_shape()
for axis in range(1, len(call_input_shape)):
if (call_input_shape[axis] is not None
and self._build_conv_op_input_shape[axis] is not None
and call_input_shape[axis] != self._build_conv_op_input_shape[axis]):
return True
return False
# If the most specific compatible shape between _build_input_shape and
# call_input_shape is not _build_input_shape then we must re-build.
return self._build_conv_op_input_shape.most_specific_compatible_shape(
call_input_shape) != self._build_conv_op_input_shape
@keras_export('keras.layers.Conv1D', 'keras.layers.Convolution1D')

View File

@ -23,6 +23,8 @@ import numpy as np
from tensorflow.python import keras
from tensorflow.python.eager import context
from tensorflow.python.eager import def_function
from tensorflow.python.framework import tensor_spec
from tensorflow.python.framework import test_util
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import testing_utils
@ -108,6 +110,26 @@ class Conv1DTest(keras_parameterized.TestCase):
_ = layer(inpt2).shape
self.assertEqual(outp1_shape, layer(inpt1).shape)
def test_conv1d_recreate_conv_unknown_dims(self):
with self.cached_session(use_gpu=True):
layer = keras.layers.Conv1D(filters=1,
kernel_size=3,
strides=1,
dilation_rate=2,
padding='causal')
inpt1 = np.random.normal(size=[1, 9, 1]).astype(np.float32)
inpt2 = np.random.normal(size=[1, 2, 1]).astype(np.float32)
outp1_shape = layer(inpt1).shape
@def_function.function(input_signature=[
tensor_spec.TensorSpec([1, None, 1])])
def fn(inpt):
return layer(inpt)
fn(inpt2)
self.assertEqual(outp1_shape, layer(inpt1).shape)
@keras_parameterized.run_all_keras_modes
class Conv2DTest(keras_parameterized.TestCase):