Update check for multiple devices found to check whether there is a single device colocated with the default_device.

If multiple devices are found in the cluster, but there is a single device colocated with default_device, the single colocated device would be used by placer. This change relaxes the current check to account for parent device scope.

For example,
@tf.function()
def replica_fn()
  with tf.device("gpu:0")

with tf.device("worker1"):
   replica_fn()

In this case there may be multiple gpu:0 in the cluster, but gpu:0 on worker 1 should be picked. In this case, we should not receive multiple devices found error.

PiperOrigin-RevId: 357996270
Change-Id: I6a19deb5f26d7741ba7f7adff7f14550679b3d6d
This commit is contained in:
Isha Arkatkar 2021-02-17 11:37:23 -08:00 committed by TensorFlower Gardener
parent acb69957a7
commit 79cd2fd4ac
4 changed files with 73 additions and 14 deletions

View File

@ -516,6 +516,22 @@ Status ProcessFunctionLibraryRuntime::PinArgsAndRets(
if (on_same_task) {
continue;
}
// Compare with default_device if it has a narrower scope matching
// requested device.
int colocated_on_default_device = 0;
for (int i = 0; i < matching_devices.size(); ++i) {
if (DeviceNameUtils::IsSameAddressSpace(
default_device->parsed_name(),
matching_devices.at(i)->parsed_name())) {
colocated_on_default_device++;
}
}
// Continue to raise error if multiple colocated devices are
// found.
if (colocated_on_default_device == 1) {
continue;
}
// Convert a vector of devices to a string.
// Using absl::StrJoin did not work in Android builds.
string devices = "[";

View File

@ -1046,6 +1046,7 @@ cuda_py_test(
"//tensorflow/python:functional_ops",
"//tensorflow/python:resource_variable_ops",
"//tensorflow/python:tensor_spec",
"//tensorflow/python:test_ops",
"@absl_py//absl/testing:parameterized",
"@six_archive//:six",
],

View File

@ -1795,6 +1795,18 @@ class FunctionTest(test.TestCase, parameterized.TestCase):
has_device.f()
self.assertIn('CPU', has_device.v.device)
@test_util.run_in_graph_and_eager_modes
def testMultipleDeviceCheck(self):
def f():
with ops.device('cpu'):
return test_ops.device_placement_op()
func = function.defun(f)
with ops.device('cpu:0'):
output = self.evaluate(func())
self.assertIn(compat.as_bytes('CPU:0'), output)
@test_util.run_in_graph_and_eager_modes
def testDeviceAnnotationsRespected(self):

View File

@ -38,6 +38,7 @@ from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_spec
from tensorflow.python.framework import test_ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
@ -45,9 +46,11 @@ from tensorflow.python.ops import data_flow_ops
from tensorflow.python.ops import functional_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import string_ops
from tensorflow.python.ops import variables
from tensorflow.python.training import server_lib
from tensorflow.python.training.server_lib import ClusterSpec
from tensorflow.python.util import compat
class SingleWorkerTest(test.TestCase, parameterized.TestCase):
@ -112,20 +115,6 @@ class SingleWorkerTest(test.TestCase, parameterized.TestCase):
self.assertEqual(rets[1].backing_device,
'/job:worker/replica:0/task:0/device:CPU:0')
def testMultiDeviceFunctionAmbiguousDevice(self):
@def_function.function
def ambiguous_device(i):
with ops.device('cpu:0'):
return i + constant_op.constant([2])
with self.assertRaises(errors.InvalidArgumentError) as cm:
with ops.device('/job:worker/replica:0/task:0/cpu:0'):
ambiguous_device(constant_op.constant([2])).numpy()
self.assertIn('the output node must match exactly one device',
cm.exception.message)
def testStreaming(self):
"""A mini stress test for streaming - issuing many RPCs back to back."""
with ops.device('job:worker/replica:0/task:0/device:CPU:0'):
@ -318,6 +307,21 @@ class MultiWorkersTest(test.TestCase, parameterized.TestCase):
with ops.device('/job:worker/replica:0/task:1'):
self.assertAllEqual(local_func(x), [2, 1])
def testMultiDeviceFunctionAmbiguousDevice(self):
@def_function.function
def ambiguous_device(i):
with ops.device('/job:worker'):
# Multiple worker tasks, thus ambiguous device found error will be
# raised.
return i + constant_op.constant([2])
with self.assertRaises(errors.InvalidArgumentError) as cm:
ambiguous_device(constant_op.constant([2])).numpy()
self.assertIn('the output node must match exactly one device',
cm.exception.message)
# Note that the following tests for remote function cancellation only works
# when non-streaming RPC. We need to disable streaming explicitly and restore
# this config to its initial value at the end of each test case.
@ -579,6 +583,32 @@ class MultiJobsTest(test.TestCase, parameterized.TestCase):
# Reset the context to avoid polluting other test cases.
context._reset_context()
def testMultipleDeviceFoundCheck(self):
remote.connect_to_cluster(self._cluster)
@def_function.function
def func():
with ops.device('cpu:0'):
# Multiple CPU:0 devices match would be found, but the CPU:0 from the
# parent device scope should be picked.
x = test_ops.device_placement_op()
y = string_ops.string_upper(x)
packed_var_0 = array_ops.stack([x, y], 0)
return packed_var_0
with ops.device('/job:my_worker/task:1'):
output = self.evaluate(func())
self.assertEqual(
compat.as_bytes('/job:my_worker/replica:0/task:1/device:CPU:0'),
output[0])
self.assertIn(compat.as_bytes('/JOB:MY_WORKER'), output[1])
with ops.device('/job:my_ps/task:1'):
output = self.evaluate(func())
self.assertEqual(
compat.as_bytes('/job:my_ps/replica:0/task:1/device:CPU:0'),
output[0])
self.assertIn(compat.as_bytes('/JOB:MY_PS'), output[1])
def testSimpleParameterServer(self):
remote.connect_to_cluster(self._cluster)