Go: Update generated wrapper functions for TensorFlow ops.
PiperOrigin-RevId: 252558885
This commit is contained in:
parent
2177c5597b
commit
797941af07
@ -4509,6 +4509,116 @@ func CTCGreedyDecoder(scope *Scope, inputs tf.Output, sequence_length tf.Output,
|
||||
return op.Output(0), op.Output(1), op.Output(2), op.Output(3)
|
||||
}
|
||||
|
||||
// CudnnRNNCanonicalToParamsV2Attr is an optional argument to CudnnRNNCanonicalToParamsV2.
|
||||
type CudnnRNNCanonicalToParamsV2Attr func(optionalAttr)
|
||||
|
||||
// CudnnRNNCanonicalToParamsV2RnnMode sets the optional rnn_mode attribute to value.
|
||||
// If not specified, defaults to "lstm"
|
||||
func CudnnRNNCanonicalToParamsV2RnnMode(value string) CudnnRNNCanonicalToParamsV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["rnn_mode"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNCanonicalToParamsV2InputMode sets the optional input_mode attribute to value.
|
||||
// If not specified, defaults to "linear_input"
|
||||
func CudnnRNNCanonicalToParamsV2InputMode(value string) CudnnRNNCanonicalToParamsV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["input_mode"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNCanonicalToParamsV2Direction sets the optional direction attribute to value.
|
||||
// If not specified, defaults to "unidirectional"
|
||||
func CudnnRNNCanonicalToParamsV2Direction(value string) CudnnRNNCanonicalToParamsV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["direction"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNCanonicalToParamsV2Dropout sets the optional dropout attribute to value.
|
||||
// If not specified, defaults to 0
|
||||
func CudnnRNNCanonicalToParamsV2Dropout(value float32) CudnnRNNCanonicalToParamsV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["dropout"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNCanonicalToParamsV2Seed sets the optional seed attribute to value.
|
||||
// If not specified, defaults to 0
|
||||
func CudnnRNNCanonicalToParamsV2Seed(value int64) CudnnRNNCanonicalToParamsV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["seed"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNCanonicalToParamsV2Seed2 sets the optional seed2 attribute to value.
|
||||
// If not specified, defaults to 0
|
||||
func CudnnRNNCanonicalToParamsV2Seed2(value int64) CudnnRNNCanonicalToParamsV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["seed2"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNCanonicalToParamsV2NumProj sets the optional num_proj attribute to value.
|
||||
// If not specified, defaults to 0
|
||||
func CudnnRNNCanonicalToParamsV2NumProj(value int64) CudnnRNNCanonicalToParamsV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["num_proj"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// Converts CudnnRNN params from canonical form to usable form. It supports the projection in LSTM.
|
||||
//
|
||||
// Writes a set of weights into the opaque params buffer so they can be used in
|
||||
// upcoming training or inferences.
|
||||
//
|
||||
// Note that the params buffer may not be compatible across different GPUs. So any
|
||||
// save and restoration should be converted to and from the canonical weights and
|
||||
// biases.
|
||||
//
|
||||
// num_layers: Specifies the number of layers in the RNN model.
|
||||
// num_units: Specifies the size of the hidden state.
|
||||
// input_size: Specifies the size of the input state.
|
||||
// weights: the canonical form of weights that can be used for saving
|
||||
// and restoration. They are more likely to be compatible across different
|
||||
// generations.
|
||||
// biases: the canonical form of biases that can be used for saving
|
||||
// and restoration. They are more likely to be compatible across different
|
||||
// generations.
|
||||
// num_params_weigths: number of weight parameter matrix for all layers.
|
||||
// num_params_biases: number of bias parameter vector for all layers.
|
||||
// rnn_mode: Indicates the type of the RNN model.
|
||||
// input_mode: Indicate whether there is a linear projection between the input and
|
||||
// The actual computation before the first layer. 'skip_input' is only allowed
|
||||
// when input_size == num_units; 'auto_select' implies 'skip_input' when
|
||||
// input_size == num_units; otherwise, it implies 'linear_input'.
|
||||
// direction: Indicates whether a bidirectional model will be used.
|
||||
// dir = (direction == bidirectional) ? 2 : 1
|
||||
// dropout: dropout probability. When set to 0., dropout is disabled.
|
||||
// seed: the 1st part of a seed to initialize dropout.
|
||||
// seed2: the 2nd part of a seed to initialize dropout.
|
||||
// num_proj: The output dimensionality for the projection matrices. If None or 0,
|
||||
// no projection is performed.
|
||||
func CudnnRNNCanonicalToParamsV2(scope *Scope, num_layers tf.Output, num_units tf.Output, input_size tf.Output, weights []tf.Output, biases []tf.Output, optional ...CudnnRNNCanonicalToParamsV2Attr) (params tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
attrs := map[string]interface{}{}
|
||||
for _, a := range optional {
|
||||
a(attrs)
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "CudnnRNNCanonicalToParamsV2",
|
||||
Input: []tf.Input{
|
||||
num_layers, num_units, input_size, tf.OutputList(weights), tf.OutputList(biases),
|
||||
},
|
||||
Attrs: attrs,
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// CudnnRNNCanonicalToParamsAttr is an optional argument to CudnnRNNCanonicalToParams.
|
||||
type CudnnRNNCanonicalToParamsAttr func(optionalAttr)
|
||||
|
||||
@ -4610,6 +4720,129 @@ func CudnnRNNCanonicalToParams(scope *Scope, num_layers tf.Output, num_units tf.
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// CudnnRNNParamsToCanonicalV2Attr is an optional argument to CudnnRNNParamsToCanonicalV2.
|
||||
type CudnnRNNParamsToCanonicalV2Attr func(optionalAttr)
|
||||
|
||||
// CudnnRNNParamsToCanonicalV2RnnMode sets the optional rnn_mode attribute to value.
|
||||
// If not specified, defaults to "lstm"
|
||||
func CudnnRNNParamsToCanonicalV2RnnMode(value string) CudnnRNNParamsToCanonicalV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["rnn_mode"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNParamsToCanonicalV2InputMode sets the optional input_mode attribute to value.
|
||||
// If not specified, defaults to "linear_input"
|
||||
func CudnnRNNParamsToCanonicalV2InputMode(value string) CudnnRNNParamsToCanonicalV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["input_mode"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNParamsToCanonicalV2Direction sets the optional direction attribute to value.
|
||||
// If not specified, defaults to "unidirectional"
|
||||
func CudnnRNNParamsToCanonicalV2Direction(value string) CudnnRNNParamsToCanonicalV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["direction"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNParamsToCanonicalV2Dropout sets the optional dropout attribute to value.
|
||||
// If not specified, defaults to 0
|
||||
func CudnnRNNParamsToCanonicalV2Dropout(value float32) CudnnRNNParamsToCanonicalV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["dropout"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNParamsToCanonicalV2Seed sets the optional seed attribute to value.
|
||||
// If not specified, defaults to 0
|
||||
func CudnnRNNParamsToCanonicalV2Seed(value int64) CudnnRNNParamsToCanonicalV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["seed"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNParamsToCanonicalV2Seed2 sets the optional seed2 attribute to value.
|
||||
// If not specified, defaults to 0
|
||||
func CudnnRNNParamsToCanonicalV2Seed2(value int64) CudnnRNNParamsToCanonicalV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["seed2"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNParamsToCanonicalV2NumProj sets the optional num_proj attribute to value.
|
||||
// If not specified, defaults to 0
|
||||
func CudnnRNNParamsToCanonicalV2NumProj(value int64) CudnnRNNParamsToCanonicalV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["num_proj"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// Retrieves CudnnRNN params in canonical form. It supports the projection in LSTM.
|
||||
//
|
||||
// Retrieves a set of weights from the opaque params buffer that can be saved and
|
||||
// restored in a way compatible with future runs.
|
||||
//
|
||||
// Note that the params buffer may not be compatible across different GPUs. So any
|
||||
// save and restoration should be converted to and from the canonical weights and
|
||||
// biases.
|
||||
//
|
||||
// num_layers: Specifies the number of layers in the RNN model.
|
||||
// num_units: Specifies the size of the hidden state.
|
||||
// input_size: Specifies the size of the input state.
|
||||
// num_params_weigths: number of weight parameter matrix for all layers.
|
||||
// num_params_biases: number of bias parameter vector for all layers.
|
||||
// weights: the canonical form of weights that can be used for saving
|
||||
// and restoration. They are more likely to be compatible across different
|
||||
// generations.
|
||||
// biases: the canonical form of biases that can be used for saving
|
||||
// and restoration. They are more likely to be compatible across different
|
||||
// generations.
|
||||
// rnn_mode: Indicates the type of the RNN model.
|
||||
// input_mode: Indicate whether there is a linear projection between the input and
|
||||
// The actual computation before the first layer. 'skip_input' is only allowed
|
||||
// when input_size == num_units; 'auto_select' implies 'skip_input' when
|
||||
// input_size == num_units; otherwise, it implies 'linear_input'.
|
||||
// direction: Indicates whether a bidirectional model will be used.
|
||||
// dir = (direction == bidirectional) ? 2 : 1
|
||||
// dropout: dropout probability. When set to 0., dropout is disabled.
|
||||
// seed: the 1st part of a seed to initialize dropout.
|
||||
// seed2: the 2nd part of a seed to initialize dropout.
|
||||
// num_proj: The output dimensionality for the projection matrices. If None or 0,
|
||||
// no projection is performed.
|
||||
func CudnnRNNParamsToCanonicalV2(scope *Scope, num_layers tf.Output, num_units tf.Output, input_size tf.Output, params tf.Output, num_params_weights int64, num_params_biases int64, optional ...CudnnRNNParamsToCanonicalV2Attr) (weights []tf.Output, biases []tf.Output) {
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
attrs := map[string]interface{}{"num_params_weights": num_params_weights, "num_params_biases": num_params_biases}
|
||||
for _, a := range optional {
|
||||
a(attrs)
|
||||
}
|
||||
opspec := tf.OpSpec{
|
||||
Type: "CudnnRNNParamsToCanonicalV2",
|
||||
Input: []tf.Input{
|
||||
num_layers, num_units, input_size, params,
|
||||
},
|
||||
Attrs: attrs,
|
||||
}
|
||||
op := scope.AddOperation(opspec)
|
||||
if scope.Err() != nil {
|
||||
return
|
||||
}
|
||||
var idx int
|
||||
var err error
|
||||
if weights, idx, err = makeOutputList(op, idx, "weights"); err != nil {
|
||||
scope.UpdateErr("CudnnRNNParamsToCanonicalV2", err)
|
||||
return
|
||||
}
|
||||
if biases, idx, err = makeOutputList(op, idx, "biases"); err != nil {
|
||||
scope.UpdateErr("CudnnRNNParamsToCanonicalV2", err)
|
||||
return
|
||||
}
|
||||
return weights, biases
|
||||
}
|
||||
|
||||
// CudnnRNNBackpropAttr is an optional argument to CudnnRNNBackprop.
|
||||
type CudnnRNNBackpropAttr func(optionalAttr)
|
||||
|
||||
@ -14047,6 +14280,14 @@ func CudnnRNNBackpropV3Seed2(value int64) CudnnRNNBackpropV3Attr {
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNBackpropV3NumProj sets the optional num_proj attribute to value.
|
||||
// If not specified, defaults to 0
|
||||
func CudnnRNNBackpropV3NumProj(value int64) CudnnRNNBackpropV3Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["num_proj"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNBackpropV3TimeMajor sets the optional time_major attribute to value.
|
||||
// If not specified, defaults to true
|
||||
func CudnnRNNBackpropV3TimeMajor(value bool) CudnnRNNBackpropV3Attr {
|
||||
@ -20107,6 +20348,14 @@ func CudnnRNNParamsSizeSeed2(value int64) CudnnRNNParamsSizeAttr {
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNParamsSizeNumProj sets the optional num_proj attribute to value.
|
||||
// If not specified, defaults to 0
|
||||
func CudnnRNNParamsSizeNumProj(value int64) CudnnRNNParamsSizeAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["num_proj"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// Computes size of weights that can be used by a Cudnn RNN model.
|
||||
//
|
||||
// Return the params size that can be used by the Cudnn RNN model. Subsequent
|
||||
@ -23351,6 +23600,14 @@ func CudnnRNNV3Seed2(value int64) CudnnRNNV3Attr {
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNV3NumProj sets the optional num_proj attribute to value.
|
||||
// If not specified, defaults to 0
|
||||
func CudnnRNNV3NumProj(value int64) CudnnRNNV3Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["num_proj"] = value
|
||||
}
|
||||
}
|
||||
|
||||
// CudnnRNNV3IsTraining sets the optional is_training attribute to value.
|
||||
// If not specified, defaults to true
|
||||
func CudnnRNNV3IsTraining(value bool) CudnnRNNV3Attr {
|
||||
|
Loading…
x
Reference in New Issue
Block a user