Add XLA-only merge that can merge all types.

This prevents insertion of H2D and D2H copies when XLA-GPU clusters
have int32 outputs. This merge is only used the merge the outputs
from the XlaRun and the the PartitionedCall node.
This commit is contained in:
Bas Aarts 2019-10-04 15:29:07 -07:00
parent 18f700fa7e
commit 791bf78c29
13 changed files with 59 additions and 8 deletions

View File

@ -135,9 +135,9 @@ void MergeOutgoingDataEdges(const Scope& s, Node* old_node, Node* new_node,
new_output = check_numerics_op;
}
ops::Merge merge_op(s.WithOpName("merge_oidx_", oidx),
{Output(old_node, oidx), new_output});
merged_output = merged_outputs[oidx] = merge_op.output;
ops::_XlaMerge xla_merge_op(s.WithOpName("merge_oidx_", oidx),
Output(old_node, oidx), new_output);
merged_output = merged_outputs[oidx] = xla_merge_op.output;
}
Node* dst = e->dst();

View File

@ -630,6 +630,17 @@ void XlaRunOp::Compute(OpKernelContext* ctx) {
input_output_alias, closure.resource_var_snapshots()));
}
XlaMergeOp::XlaMergeOp(OpKernelConstruction* ctx)
: OpKernel(ctx), platform_info_(PlatformInfoFromContext(ctx)) {}
void XlaMergeOp::Compute(OpKernelContext* ctx) {
VLOG(3) << "XlaMergeOp " << def().name();
int i=0;
if (ctx->has_input(i) || ctx->has_input(++i)) {
ctx->set_output(0, ctx->input(i));
}
}
REGISTER_KERNEL_BUILDER(Name("XlaLaunch").Device(DEVICE_CPU), XlaLocalLaunchOp);
REGISTER_KERNEL_BUILDER(Name("XlaLaunch")
@ -648,6 +659,12 @@ REGISTER_KERNEL_BUILDER(Name("_XlaCompile")
XlaCompileOp);
REGISTER_KERNEL_BUILDER(Name("_XlaRun").Device(DEVICE_CPU), XlaRunOp);
REGISTER_KERNEL_BUILDER(Name("_XlaRun").Device(DEVICE_GPU), XlaRunOp);
REGISTER_KERNEL_BUILDER(Name("_XlaRun")
.Device(DEVICE_GPU)
.HostMemory("key"),
XlaRunOp);
REGISTER_KERNEL_BUILDER(Name("_XlaMerge").Device(DEVICE_CPU), XlaMergeOp);
REGISTER_KERNEL_BUILDER(Name("_XlaMerge").Device(DEVICE_GPU), XlaMergeOp);
} // namespace tensorflow

View File

@ -175,6 +175,16 @@ class XlaRunOp : public OpKernel {
const XlaPlatformInfo platform_info_;
};
class XlaMergeOp : public OpKernel {
public:
explicit XlaMergeOp(OpKernelConstruction* ctx);
void Compute(OpKernelContext* ctx) override;
private:
const XlaPlatformInfo platform_info_;
};
} // namespace tensorflow
#endif // TENSORFLOW_COMPILER_JIT_KERNELS_XLA_LAUNCH_OP_H_

View File

@ -95,4 +95,18 @@ Executes a TensorFlow function previously compiled into a LocalExecutable by an
_XlaCompile op.
)");
REGISTER_OP("_XlaMerge")
.Input("partitioned_call: T")
.Input("xla_run: T")
.Output("output: T")
.Attr("T: type")
.SetShapeFn([](InferenceContext* c) {
c->set_output(0, c->input(0));
return Status::OK();
})
.Doc(R"(XLA Merge Op. For use by the XLA JIT only.
Merges the outputs from the TensorFlow fallback execution and the _XlaRun node.
)");
} // namespace tensorflow

View File

@ -106,6 +106,7 @@ constexpr std::array<DataType, 16> kAllXlaCpuTypes = {
REGISTER_XLA_LAUNCH_KERNEL(DEVICE_XLA_CPU, XlaLocalLaunchOp, kAllXlaCpuTypes);
REGISTER_XLA_COMPILE_KERNEL(DEVICE_XLA_CPU, XlaCompileOp, kAllXlaCpuTypes);
REGISTER_XLA_RUN_KERNEL(DEVICE_XLA_CPU, XlaRunOp, kAllXlaCpuTypes);
REGISTER_XLA_MERGE_KERNEL(DEVICE_XLA_CPU, XlaMergeOp, kAllXlaCpuTypes);
REGISTER_XLA_DEVICE_KERNELS(DEVICE_XLA_CPU, kAllXlaCpuTypes);

View File

@ -72,6 +72,11 @@ class XlaAssignVariableOp : public OpKernel {
#define REGISTER_XLA_RUN_KERNEL(DEVICE, KERNEL, TYPES) \
REGISTER_KERNEL_BUILDER(Name("_XlaRun").Device(DEVICE), KERNEL);
#define REGISTER_XLA_MERGE_KERNEL(DEVICE, KERNEL, TYPES) \
REGISTER_KERNEL_BUILDER(Name("_XlaMerge") \
.Device(DEVICE), \
KERNEL);
#define REGISTER_XLA_DEVICE_KERNELS(DEVICE, TYPES) \
REGISTER_KERNEL_BUILDER( \
Name("Const").Device(DEVICE).TypeConstraint("dtype", TYPES), \

View File

@ -155,6 +155,7 @@ constexpr std::array<DataType, 16> kAllXlaGpuTypes = {
REGISTER_XLA_LAUNCH_KERNEL(DEVICE_XLA_GPU, XlaLocalLaunchOp, kAllXlaGpuTypes);
REGISTER_XLA_COMPILE_KERNEL(DEVICE_XLA_GPU, XlaCompileOp, kAllXlaGpuTypes);
REGISTER_XLA_RUN_KERNEL(DEVICE_XLA_GPU, XlaRunOp, kAllXlaGpuTypes);
REGISTER_XLA_MERGE_KERNEL(DEVICE_XLA_GPU, XlaMergeOp, kAllXlaGpuTypes);
REGISTER_XLA_DEVICE_KERNELS(DEVICE_XLA_GPU, kAllXlaGpuTypes);

View File

@ -99,6 +99,7 @@ REGISTER_XLA_LAUNCH_KERNEL(DEVICE_XLA_INTERPRETER, XlaLocalLaunchOp,
REGISTER_XLA_COMPILE_KERNEL(DEVICE_XLA_INTERPRETER, XlaCompileOp,
kExecAllTypes);
REGISTER_XLA_RUN_KERNEL(DEVICE_XLA_INTERPRETER, XlaRunOp, kExecAllTypes);
REGISTER_XLA_MERGE_KERNEL(DEVICE_XLA_INTERPRETER, XlaMergeOp, kExecAllTypes);
REGISTER_XLA_DEVICE_KERNELS(DEVICE_XLA_INTERPRETER, kExecAllTypes);
REGISTER_XLA_BACKEND(DEVICE_INTERPRETER_XLA_JIT, kExecAllTypes, OpFilter);

View File

@ -101,6 +101,7 @@ const std::unordered_map<string, Node::NodeClass>& Node::kNodeClassTable =
{"_DeviceArg", NC_ARG},
{"_Retval", NC_RETVAL},
{"_DeviceRetval", NC_RETVAL},
{"_XlaMerge", NC_MERGE},
});
#undef REF_CLASS

View File

@ -56,7 +56,7 @@ namespace {
static constexpr const bool kDoNotCheckDuplicates = true;
inline bool IsMerge(const NodeDef& node_def) {
return node_def.op() == "Merge" || node_def.op() == "RefMerge";
return node_def.op() == "Merge" || node_def.op() == "RefMerge" || node_def.op() == "_XlaMerge";
}
inline bool IsNextIteration(const NodeDef& node_def) {

View File

@ -47,7 +47,7 @@ namespace tensorflow {
namespace {
inline bool IsMerge(const NodeDef& node_def) {
return node_def.op() == "Merge" || node_def.op() == "RefMerge";
return node_def.op() == "Merge" || node_def.op() == "RefMerge" || node_def.op() == "_XlaMerge";
}
inline bool IsNextIteration(const NodeDef& node_def) {

View File

@ -153,6 +153,7 @@ bool IsControlFlow(const NodeDef& node) {
node.op() == "Exit" ||
node.op() == "LoopCond" ||
node.op() == "Merge" ||
node.op() == "_XlaMerge" ||
node.op() == "NextIteration" ||
node.op() == "Switch" ||
node.op() == "_SwitchN";
@ -332,7 +333,7 @@ bool IsMean(const NodeDef& node) { return node.op() == "Mean"; }
bool IsMerge(const NodeDef& node) {
const auto& op = node.op();
return op == "Merge" || op == "RefMerge";
return op == "Merge" || op == "RefMerge" || op == "_XlaMerge";
}
bool IsMin(const NodeDef& node) { return node.op() == "Min"; }

View File

@ -26,7 +26,7 @@ namespace graph_transforms {
namespace {
inline bool IsMerge(const NodeDef& node_def) {
return node_def.op() == "Merge" || node_def.op() == "RefMerge";
return node_def.op() == "Merge" || node_def.op() == "RefMerge" || node_def.op() == "_XlaMerge";
}
void RecordMatchedNodes(const NodeMatch& match,