Merge pull request #46160 from rkuester:feature-micro-add-op-space-to-depth-pr3
PiperOrigin-RevId: 350681169 Change-Id: I2331f30b11f6bbf0d1cabb8f6961bad0c4ab136d
This commit is contained in:
		
						commit
						7719705955
					
				
							
								
								
									
										166
									
								
								tensorflow/lite/micro/kernels/space_to_depth.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										166
									
								
								tensorflow/lite/micro/kernels/space_to_depth.cc
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,166 @@
 | 
			
		||||
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
 | 
			
		||||
 | 
			
		||||
Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
you may not use this file except in compliance with the License.
 | 
			
		||||
You may obtain a copy of the License at
 | 
			
		||||
 | 
			
		||||
    http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 | 
			
		||||
Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
See the License for the specific language governing permissions and
 | 
			
		||||
limitations under the License.
 | 
			
		||||
==============================================================================*/
 | 
			
		||||
#include <stdint.h>
 | 
			
		||||
 | 
			
		||||
#include "tensorflow/lite/c/builtin_op_data.h"
 | 
			
		||||
#include "tensorflow/lite/c/common.h"
 | 
			
		||||
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
 | 
			
		||||
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
 | 
			
		||||
#include "tensorflow/lite/kernels/internal/tensor.h"
 | 
			
		||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
 | 
			
		||||
#include "tensorflow/lite/kernels/internal/types.h"
 | 
			
		||||
#include "tensorflow/lite/kernels/kernel_util.h"
 | 
			
		||||
 | 
			
		||||
namespace tflite {
 | 
			
		||||
namespace ops {
 | 
			
		||||
namespace builtin {
 | 
			
		||||
namespace space_to_depth {
 | 
			
		||||
 | 
			
		||||
// This file has two implementation of SpaceToDepth. Note that SpaceToDepth
 | 
			
		||||
// only works on 4D tensors.
 | 
			
		||||
enum KernelType {
 | 
			
		||||
  kReference,
 | 
			
		||||
  kGenericOptimized,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
constexpr int kInputTensor = 0;
 | 
			
		||||
constexpr int kOutputTensor = 0;
 | 
			
		||||
 | 
			
		||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
 | 
			
		||||
  auto* params =
 | 
			
		||||
      reinterpret_cast<TfLiteSpaceToDepthParams*>(node->builtin_data);
 | 
			
		||||
 | 
			
		||||
  TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
 | 
			
		||||
  TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
 | 
			
		||||
 | 
			
		||||
  const TfLiteTensor* input;
 | 
			
		||||
  TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
 | 
			
		||||
  TfLiteTensor* output;
 | 
			
		||||
  TF_LITE_ENSURE_OK(context,
 | 
			
		||||
                    GetOutputSafe(context, node, kOutputTensor, &output));
 | 
			
		||||
 | 
			
		||||
  TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4);
 | 
			
		||||
 | 
			
		||||
  auto data_type = output->type;
 | 
			
		||||
  TF_LITE_ENSURE(context,
 | 
			
		||||
                 data_type == kTfLiteFloat32 || data_type == kTfLiteUInt8 ||
 | 
			
		||||
                     data_type == kTfLiteInt8 || data_type == kTfLiteInt32 ||
 | 
			
		||||
                     data_type == kTfLiteInt64);
 | 
			
		||||
  TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
 | 
			
		||||
 | 
			
		||||
  const int block_size = params->block_size;
 | 
			
		||||
  const int input_height = input->dims->data[1];
 | 
			
		||||
  const int input_width = input->dims->data[2];
 | 
			
		||||
  int output_height = input_height / block_size;
 | 
			
		||||
  int output_width = input_width / block_size;
 | 
			
		||||
 | 
			
		||||
  TF_LITE_ENSURE_EQ(context, input_height, output_height * block_size);
 | 
			
		||||
  TF_LITE_ENSURE_EQ(context, input_width, output_width * block_size);
 | 
			
		||||
 | 
			
		||||
  TfLiteIntArray* output_size = TfLiteIntArrayCreate(4);
 | 
			
		||||
  output_size->data[0] = input->dims->data[0];
 | 
			
		||||
  output_size->data[1] = output_height;
 | 
			
		||||
  output_size->data[2] = output_width;
 | 
			
		||||
  output_size->data[3] = input->dims->data[3] * block_size * block_size;
 | 
			
		||||
 | 
			
		||||
  return context->ResizeTensor(context, output, output_size);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <KernelType kernel_type>
 | 
			
		||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
 | 
			
		||||
  auto* params =
 | 
			
		||||
      reinterpret_cast<TfLiteSpaceToDepthParams*>(node->builtin_data);
 | 
			
		||||
 | 
			
		||||
  const TfLiteTensor* input;
 | 
			
		||||
  TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
 | 
			
		||||
  TfLiteTensor* output;
 | 
			
		||||
  TF_LITE_ENSURE_OK(context,
 | 
			
		||||
                    GetOutputSafe(context, node, kOutputTensor, &output));
 | 
			
		||||
 | 
			
		||||
#define TF_LITE_SPACE_TO_DEPTH(type, scalar)                               \
 | 
			
		||||
  tflite::SpaceToDepthParams op_params;                                    \
 | 
			
		||||
  op_params.block_size = params->block_size;                               \
 | 
			
		||||
  type::SpaceToDepth(op_params, GetTensorShape(input),                     \
 | 
			
		||||
                     GetTensorData<scalar>(input), GetTensorShape(output), \
 | 
			
		||||
                     GetTensorData<scalar>(output))
 | 
			
		||||
  switch (input->type) {  // Already know in/out types are same.
 | 
			
		||||
    case kTfLiteFloat32:
 | 
			
		||||
      if (kernel_type == kReference) {
 | 
			
		||||
        TF_LITE_SPACE_TO_DEPTH(reference_ops, float);
 | 
			
		||||
      } else {
 | 
			
		||||
        TF_LITE_SPACE_TO_DEPTH(optimized_ops, float);
 | 
			
		||||
      }
 | 
			
		||||
      break;
 | 
			
		||||
    case kTfLiteUInt8:
 | 
			
		||||
      if (kernel_type == kReference) {
 | 
			
		||||
        TF_LITE_SPACE_TO_DEPTH(reference_ops, uint8_t);
 | 
			
		||||
      } else {
 | 
			
		||||
        TF_LITE_SPACE_TO_DEPTH(optimized_ops, uint8_t);
 | 
			
		||||
      }
 | 
			
		||||
      break;
 | 
			
		||||
    case kTfLiteInt8:
 | 
			
		||||
      if (kernel_type == kReference) {
 | 
			
		||||
        TF_LITE_SPACE_TO_DEPTH(reference_ops, int8_t);
 | 
			
		||||
      } else {
 | 
			
		||||
        TF_LITE_SPACE_TO_DEPTH(optimized_ops, int8_t);
 | 
			
		||||
      }
 | 
			
		||||
      break;
 | 
			
		||||
    case kTfLiteInt32:
 | 
			
		||||
      if (kernel_type == kReference) {
 | 
			
		||||
        TF_LITE_SPACE_TO_DEPTH(reference_ops, int32_t);
 | 
			
		||||
      } else {
 | 
			
		||||
        TF_LITE_SPACE_TO_DEPTH(optimized_ops, int32_t);
 | 
			
		||||
      }
 | 
			
		||||
      break;
 | 
			
		||||
    case kTfLiteInt64:
 | 
			
		||||
      if (kernel_type == kReference) {
 | 
			
		||||
        TF_LITE_SPACE_TO_DEPTH(reference_ops, int64_t);
 | 
			
		||||
      } else {
 | 
			
		||||
        TF_LITE_SPACE_TO_DEPTH(optimized_ops, int64_t);
 | 
			
		||||
      }
 | 
			
		||||
      break;
 | 
			
		||||
    default:
 | 
			
		||||
      TF_LITE_KERNEL_LOG(context, "Type '%s' not currently supported.",
 | 
			
		||||
                         TfLiteTypeGetName(input->type));
 | 
			
		||||
      return kTfLiteError;
 | 
			
		||||
  }
 | 
			
		||||
#undef TF_LITE_SPACE_TO_DEPTH
 | 
			
		||||
 | 
			
		||||
  return kTfLiteOk;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
}  // namespace space_to_depth
 | 
			
		||||
 | 
			
		||||
TfLiteRegistration* Register_SPACE_TO_DEPTH_REF() {
 | 
			
		||||
  static TfLiteRegistration r = {
 | 
			
		||||
      nullptr, nullptr, space_to_depth::Prepare,
 | 
			
		||||
      space_to_depth::Eval<space_to_depth::kReference>};
 | 
			
		||||
  return &r;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TfLiteRegistration* Register_SPACE_TO_DEPTH_GENERIC_OPT() {
 | 
			
		||||
  static TfLiteRegistration r = {
 | 
			
		||||
      nullptr, nullptr, space_to_depth::Prepare,
 | 
			
		||||
      space_to_depth::Eval<space_to_depth::kGenericOptimized>};
 | 
			
		||||
  return &r;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TfLiteRegistration* Register_SPACE_TO_DEPTH() {
 | 
			
		||||
  return Register_SPACE_TO_DEPTH_GENERIC_OPT();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
}  // namespace builtin
 | 
			
		||||
}  // namespace ops
 | 
			
		||||
}  // namespace tflite
 | 
			
		||||
							
								
								
									
										108
									
								
								tensorflow/lite/micro/kernels/space_to_depth_test.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										108
									
								
								tensorflow/lite/micro/kernels/space_to_depth_test.cc
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,108 @@
 | 
			
		||||
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
 | 
			
		||||
 | 
			
		||||
Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
you may not use this file except in compliance with the License.
 | 
			
		||||
You may obtain a copy of the License at
 | 
			
		||||
 | 
			
		||||
    http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
 | 
			
		||||
Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
See the License for the specific language governing permissions and
 | 
			
		||||
limitations under the License.
 | 
			
		||||
==============================================================================*/
 | 
			
		||||
#include <stdint.h>
 | 
			
		||||
 | 
			
		||||
#include <initializer_list>
 | 
			
		||||
#include <vector>
 | 
			
		||||
 | 
			
		||||
#include "flatbuffers/flatbuffers.h"  // from @flatbuffers
 | 
			
		||||
#include "tensorflow/lite/kernels/test_util.h"
 | 
			
		||||
#include "tensorflow/lite/schema/schema_generated.h"
 | 
			
		||||
 | 
			
		||||
namespace tflite {
 | 
			
		||||
namespace {
 | 
			
		||||
 | 
			
		||||
using ::testing::ElementsAre;
 | 
			
		||||
using ::testing::ElementsAreArray;
 | 
			
		||||
 | 
			
		||||
class SpaceToDepthOpModel : public SingleOpModel {
 | 
			
		||||
 public:
 | 
			
		||||
  SpaceToDepthOpModel(const TensorData& tensor_data, int block_size) {
 | 
			
		||||
    input_ = AddInput(tensor_data);
 | 
			
		||||
    output_ = AddOutput(tensor_data);
 | 
			
		||||
    SetBuiltinOp(BuiltinOperator_SPACE_TO_DEPTH,
 | 
			
		||||
                 BuiltinOptions_SpaceToDepthOptions,
 | 
			
		||||
                 CreateSpaceToDepthOptions(builder_, block_size).Union());
 | 
			
		||||
    BuildInterpreter({GetShape(input_)});
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  template <typename T>
 | 
			
		||||
  void SetInput(std::initializer_list<T> data) {
 | 
			
		||||
    PopulateTensor<T>(input_, data);
 | 
			
		||||
  }
 | 
			
		||||
  template <typename T>
 | 
			
		||||
  std::vector<T> GetOutput() {
 | 
			
		||||
    return ExtractVector<T>(output_);
 | 
			
		||||
  }
 | 
			
		||||
  std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
 | 
			
		||||
 | 
			
		||||
 private:
 | 
			
		||||
  int input_;
 | 
			
		||||
  int output_;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#ifdef GTEST_HAS_DEATH_TEST
 | 
			
		||||
TEST(SpaceToDepthOpModel, BadBlockSize) {
 | 
			
		||||
  EXPECT_DEATH(SpaceToDepthOpModel({TensorType_FLOAT32, {1, 2, 2, 1}}, 3),
 | 
			
		||||
               "Cannot allocate tensors");
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
TEST(SpaceToDepthOpModel, Float32) {
 | 
			
		||||
  SpaceToDepthOpModel m({TensorType_FLOAT32, {1, 2, 2, 2}}, 2);
 | 
			
		||||
  m.SetInput<float>({1.4, 2.3, 3.2, 4.1, 5.4, 6.3, 7.2, 8.1});
 | 
			
		||||
  m.Invoke();
 | 
			
		||||
  EXPECT_THAT(m.GetOutput<float>(),
 | 
			
		||||
              ElementsAreArray({1.4, 2.3, 3.2, 4.1, 5.4, 6.3, 7.2, 8.1}));
 | 
			
		||||
  EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 1, 1, 8));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(SpaceToDepthOpModel, Uint8) {
 | 
			
		||||
  SpaceToDepthOpModel m({TensorType_UINT8, {1, 2, 2, 1}}, 2);
 | 
			
		||||
  m.SetInput<uint8_t>({1, 2, 3, 4});
 | 
			
		||||
  m.Invoke();
 | 
			
		||||
  EXPECT_THAT(m.GetOutput<uint8_t>(), ElementsAreArray({1, 2, 3, 4}));
 | 
			
		||||
  EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 1, 1, 4));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(SpaceToDepthOpModel, int8) {
 | 
			
		||||
  SpaceToDepthOpModel m({TensorType_INT8, {1, 2, 2, 1}}, 2);
 | 
			
		||||
  m.SetInput<int8_t>({1, 2, 3, 4});
 | 
			
		||||
  m.Invoke();
 | 
			
		||||
  EXPECT_THAT(m.GetOutput<int8_t>(), ElementsAreArray({1, 2, 3, 4}));
 | 
			
		||||
  EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 1, 1, 4));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(SpaceToDepthOpModel, Int32) {
 | 
			
		||||
  SpaceToDepthOpModel m({TensorType_INT32, {1, 2, 2, 3}}, 2);
 | 
			
		||||
  m.SetInput<int32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
 | 
			
		||||
  m.Invoke();
 | 
			
		||||
  EXPECT_THAT(m.GetOutput<int32_t>(),
 | 
			
		||||
              ElementsAreArray({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}));
 | 
			
		||||
  EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 1, 1, 12));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(SpaceToDepthOpModel, Int64) {
 | 
			
		||||
  SpaceToDepthOpModel m({TensorType_INT64, {1, 4, 4, 1}}, 2);
 | 
			
		||||
  m.SetInput<int64_t>({1, 2, 5, 6, 3, 4, 7, 8, 9, 10, 13, 14, 11, 12, 15, 16});
 | 
			
		||||
  m.Invoke();
 | 
			
		||||
  EXPECT_THAT(m.GetOutput<int64_t>(),
 | 
			
		||||
              ElementsAreArray(
 | 
			
		||||
                  {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}));
 | 
			
		||||
  EXPECT_THAT(m.GetOutputShape(), ElementsAre(1, 2, 2, 4));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
}  // namespace
 | 
			
		||||
}  // namespace tflite
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user