Add tile op tests with const input

PiperOrigin-RevId: 251637948
This commit is contained in:
A. Unique TensorFlower 2019-06-05 07:23:43 -07:00 committed by TensorFlower Gardener
parent 8b7052c4d8
commit 770481fb3e

View File

@ -23,24 +23,16 @@ namespace tflite {
namespace {
using ::testing::ElementsAreArray;
class TileOpModel : public SingleOpModel {
class TileOpBaseModel : public SingleOpModel {
public:
TileOpModel(std::initializer_list<int> input_shape, TensorType input_type,
TensorType multiply_type) {
input_ = AddInput(input_type);
multipliers_ = AddInput(TensorType_INT32);
output_ = AddOutput(input_type);
SetBuiltinOp(BuiltinOperator_TILE, BuiltinOptions_TileOptions, 0);
BuildInterpreter({input_shape, {static_cast<int>(input_shape.size())}});
}
template <typename T>
void SetInput(std::initializer_list<T> data) {
PopulateTensor<T>(input_, data);
}
void SetMultipliers(std::initializer_list<int32_t> data) {
PopulateTensor<int32_t>(multipliers_, data);
template <typename T>
void SetMultipliers(std::initializer_list<T> data) {
PopulateTensor<T>(multipliers_, data);
}
template <typename T>
@ -57,30 +49,83 @@ class TileOpModel : public SingleOpModel {
};
template <typename T>
void Check(std::initializer_list<int> input_shape,
std::initializer_list<T> input_data,
std::initializer_list<int> multipliers_data,
std::initializer_list<int> exp_output_shape,
std::initializer_list<T> exp_output_data, TensorType input_type,
TensorType multiply_type) {
TileOpModel m(input_shape, input_type, multiply_type);
m.SetInput(input_data);
m.SetMultipliers(multipliers_data);
m.Invoke();
class TileOpConstModel : public TileOpBaseModel {
public:
TileOpConstModel(std::initializer_list<int> input_shape,
TensorType input_type, TensorType multiply_type,
std::initializer_list<T> multipliers_data) {
input_ = AddInput(input_type);
multipliers_ = AddConstInput(multiply_type, multipliers_data,
{static_cast<int>(multipliers_data.size())});
output_ = AddOutput(input_type);
SetBuiltinOp(BuiltinOperator_TILE, BuiltinOptions_TileOptions, 0);
BuildInterpreter({input_shape, {static_cast<int>(input_shape.size())}});
}
};
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray(exp_output_shape));
EXPECT_THAT(m.GetOutput<T>(), ElementsAreArray(exp_output_data));
class TileOpDynamicModel : public TileOpBaseModel {
public:
TileOpDynamicModel(std::initializer_list<int> input_shape,
TensorType input_type, TensorType multiply_type) {
input_ = AddInput(input_type);
multipliers_ = AddInput(multiply_type);
output_ = AddOutput(input_type);
SetBuiltinOp(BuiltinOperator_TILE, BuiltinOptions_TileOptions, 0);
BuildInterpreter({input_shape, {static_cast<int>(input_shape.size())}});
}
};
enum class TestType {
kConst = 0,
kDynamic = 1,
};
template <typename InputType, typename MultipliersType = int32_t>
void Check(std::initializer_list<int> input_shape,
std::initializer_list<InputType> input_data,
std::initializer_list<MultipliersType> multipliers_data,
std::initializer_list<int> exp_output_shape,
std::initializer_list<InputType> exp_output_data,
TensorType input_type, TensorType multiply_type,
TestType test_type) {
switch (test_type) {
case TestType::kConst: {
TileOpConstModel<MultipliersType> m(input_shape, input_type,
multiply_type, multipliers_data);
m.SetInput(input_data);
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray(exp_output_shape));
EXPECT_THAT(m.template GetOutput<InputType>(),
ElementsAreArray(exp_output_data));
return;
}
case TestType::kDynamic: {
TileOpDynamicModel m(input_shape, input_type, multiply_type);
m.SetInput(input_data);
m.SetMultipliers(multipliers_data);
m.Invoke();
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray(exp_output_shape));
EXPECT_THAT(m.template GetOutput<InputType>(),
ElementsAreArray(exp_output_data));
return;
}
}
}
TEST(TileTest, Float32Vector) {
Check<float>(/*input_shape=*/{3}, /*input_data=*/{1.0, 2.0, 3.0},
class TileTest : public ::testing::TestWithParam<TestType> {};
TEST_P(TileTest, Float32Vector) {
Check<float>(/*input_shape=*/{3},
/*input_data=*/{1.0, 2.0, 3.0},
/*multipliers_data=*/{2}, /*exp_output_shape=*/{6},
/*exp_output_data=*/{1.0, 2.0, 3.0, 1.0, 2.0, 3.0},
/*input_type=*/TensorType_FLOAT32,
/*multiply_type=*/TensorType_INT32);
/*multiply_type=*/TensorType_INT32, GetParam());
}
TEST(TileTest, Float32Matrix) {
TEST_P(TileTest, Float32Matrix) {
Check<float>(
/*input_shape=*/{2, 3},
/*input_data=*/{11.f, 12.f, 13.f, 21.f, 22.f, 23.f},
@ -88,10 +133,10 @@ TEST(TileTest, Float32Matrix) {
/*exp_output_data=*/
{11.f, 12.f, 13.f, 21.f, 22.f, 23.f, 11.f, 12.f, 13.f, 21.f, 22.f, 23.f},
/*input_type=*/TensorType_FLOAT32,
/*multiply_type=*/TensorType_INT32);
/*multiply_type=*/TensorType_INT32, GetParam());
}
TEST(TileTest, Float32HighDimension) {
TEST_P(TileTest, Float32HighDimension) {
Check<float>(
/*input_shape=*/{1, 2, 3},
/*input_data=*/{11.f, 12.f, 13.f, 21.f, 22.f, 23.f},
@ -102,30 +147,30 @@ TEST(TileTest, Float32HighDimension) {
11.f, 12.f, 13.f, 21.f, 22.f, 23.f, 11.f, 12.f,
13.f, 21.f, 22.f, 23.f},
/*input_type=*/TensorType_FLOAT32,
/*multiply_type=*/TensorType_INT32);
/*multiply_type=*/TensorType_INT32, GetParam());
}
TEST(TileTest, Uint8Matrix) {
TEST_P(TileTest, Uint8Matrix) {
Check<uint8_t>(
/*input_shape=*/{2, 3},
/*input_data=*/{11, 12, 13, 21, 22, 23},
/*multipliers_data=*/{2, 1}, /*exp_output_shape=*/{4, 3},
/*exp_output_data=*/{11, 12, 13, 21, 22, 23, 11, 12, 13, 21, 22, 23},
/*input_type=*/TensorType_UINT8,
/*multiply_type=*/TensorType_INT32);
/*multiply_type=*/TensorType_INT32, GetParam());
}
TEST(TileTest, Int32Matrix) {
TEST_P(TileTest, Int32Matrix) {
Check<int32_t>(
/*input_shape=*/{2, 3},
/*input_data=*/{11, 12, 13, 21, 22, 23},
/*multipliers_data=*/{2, 1}, /*exp_output_shape=*/{4, 3},
/*exp_output_data=*/{11, 12, 13, 21, 22, 23, 11, 12, 13, 21, 22, 23},
/*input_type=*/TensorType_INT32,
/*multiply_type=*/TensorType_INT32);
/*multiply_type=*/TensorType_INT32, GetParam());
}
TEST(TileTest, BooleanMatrix) {
TEST_P(TileTest, BooleanMatrix) {
Check<bool>(
/*input_shape=*/{2, 3},
/*input_data=*/{true, false, false, true, true, false},
@ -134,27 +179,31 @@ TEST(TileTest, BooleanMatrix) {
{true, false, false, true, true, false, true, false, false, true, true,
false},
/*input_type=*/TensorType_BOOL,
/*multiply_type=*/TensorType_INT32);
/*multiply_type=*/TensorType_INT32, GetParam());
}
TEST(TileTest, Int64Matrix) {
TEST_P(TileTest, Int64Matrix) {
Check<int64_t>(
/*input_shape=*/{2, 3},
/*input_data=*/{11, 12, 13, 21, 22, 23},
/*multipliers_data=*/{2, 1}, /*exp_output_shape=*/{4, 3},
/*exp_output_data=*/{11, 12, 13, 21, 22, 23, 11, 12, 13, 21, 22, 23},
/*input_type=*/TensorType_INT64,
/*multiply_type=*/TensorType_INT32);
/*multiply_type=*/TensorType_INT32, GetParam());
}
TEST(TileTest, Int64Matrix64Multipliers) {
Check<int64_t>(
TEST_P(TileTest, Int64Matrix64Multipliers) {
Check<int64_t, int64_t>(
/*input_shape=*/{2, 3},
/*input_data=*/{11, 12, 13, 21, 22, 23},
/*multipliers_data=*/{2, 1}, /*exp_output_shape=*/{4, 3},
/*exp_output_data=*/{11, 12, 13, 21, 22, 23, 11, 12, 13, 21, 22, 23},
/*input_type=*/TensorType_INT64,
/*multiply_type=*/TensorType_INT64);
/*multiply_type=*/TensorType_INT64, GetParam());
}
INSTANTIATE_TEST_SUITE_P(TileTest, TileTest,
::testing::Values(TestType::kConst,
TestType::kDynamic));
} // namespace
} // namespace tflite