Initial API compatibility script for TF2.0. I am pretty much reusing 1.0 conversion script but passing V2 data. Also, remove code from tf_update.py which is also in ast_edits.py.

PiperOrigin-RevId: 205887317
This commit is contained in:
Anna R 2018-07-24 14:02:04 -07:00 committed by TensorFlower Gardener
parent 57d051e7b1
commit 76e8f7b7fd
9 changed files with 551 additions and 489 deletions

View File

@ -8,10 +8,17 @@ load(
"tf_cc_test", # @unused
)
py_library(
name = "ast_edits",
srcs = ["ast_edits.py"],
srcs_version = "PY2AND3",
)
py_binary(
name = "tf_upgrade",
srcs = ["tf_upgrade.py"],
srcs_version = "PY2AND3",
deps = [":ast_edits"],
)
py_test(
@ -26,6 +33,28 @@ py_test(
],
)
py_binary(
name = "tf_upgrade_v2",
srcs = [
"renames_v2.py",
"tf_upgrade_v2.py",
],
srcs_version = "PY2AND3",
deps = [":ast_edits"],
)
py_test(
name = "tf_upgrade_v2_test",
srcs = ["tf_upgrade_v2_test.py"],
srcs_version = "PY2AND3",
deps = [
":tf_upgrade_v2",
"//tensorflow/python:client_testlib",
"//tensorflow/python:framework_test_lib",
"@six_archive//:six",
],
)
# Keep for reference, this test will succeed in 0.11 but fail in 1.0
# py_test(
# name = "test_file_v0_11",
@ -62,9 +91,37 @@ py_test(
],
)
exports_files(
[
"tf_upgrade.py",
"testdata/test_file_v0_11.py",
genrule(
name = "generate_upgraded_file_v2",
testonly = 1,
srcs = ["testdata/test_file_v1_10.py"],
outs = [
"test_file_v2_0.py",
"report_v2.txt",
],
cmd = ("$(location :tf_upgrade_v2)" +
" --infile $(location testdata/test_file_v1_10.py)" +
" --outfile $(location test_file_v2_0.py)" +
" --reportfile $(location report_v2.txt)"),
tools = [":tf_upgrade_v2"],
)
py_test(
name = "test_file_v2_0",
size = "small",
srcs = ["test_file_v2_0.py"],
srcs_version = "PY2AND3",
deps = [
"//tensorflow:tensorflow_py",
],
)
exports_files(
[
"ast_edits.py",
"tf_upgrade.py",
"renames_v2.py",
"testdata/test_file_v0_11.py",
"testdata/test_file_v1_10.py",
],
)

View File

@ -0,0 +1,134 @@
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=line-too-long
"""List of renames to apply when converting from TF 1.0 to TF 2.0.
THIS FILE IS AUTOGENERATED: To update, please run:
bazel build tensorflow/tools/compatibility/update:generate_v2_renames_map
bazel-bin/tensorflow/tools/compatibility/update/generate_v2_renames_map
This file should be updated whenever endpoints are deprecated.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
renames = {
'tf.acos': 'tf.math.acos',
'tf.acosh': 'tf.math.acosh',
'tf.add': 'tf.math.add',
'tf.as_string': 'tf.dtypes.as_string',
'tf.asin': 'tf.math.asin',
'tf.asinh': 'tf.math.asinh',
'tf.atan': 'tf.math.atan',
'tf.atan2': 'tf.math.atan2',
'tf.atanh': 'tf.math.atanh',
'tf.batch_to_space_nd': 'tf.manip.batch_to_space_nd',
'tf.betainc': 'tf.math.betainc',
'tf.ceil': 'tf.math.ceil',
'tf.check_numerics': 'tf.debugging.check_numerics',
'tf.cholesky': 'tf.linalg.cholesky',
'tf.cos': 'tf.math.cos',
'tf.cosh': 'tf.math.cosh',
'tf.cross': 'tf.linalg.cross',
'tf.decode_base64': 'tf.io.decode_base64',
'tf.decode_compressed': 'tf.io.decode_compressed',
'tf.decode_json_example': 'tf.io.decode_json_example',
'tf.decode_raw': 'tf.io.decode_raw',
'tf.dequantize': 'tf.quantization.dequantize',
'tf.diag': 'tf.linalg.tensor_diag',
'tf.diag_part': 'tf.linalg.tensor_diag_part',
'tf.digamma': 'tf.math.digamma',
'tf.encode_base64': 'tf.io.encode_base64',
'tf.equal': 'tf.math.equal',
'tf.erfc': 'tf.math.erfc',
'tf.exp': 'tf.math.exp',
'tf.expm1': 'tf.math.expm1',
'tf.extract_image_patches': 'tf.image.extract_image_patches',
'tf.fake_quant_with_min_max_args': 'tf.quantization.fake_quant_with_min_max_args',
'tf.fake_quant_with_min_max_args_gradient': 'tf.quantization.fake_quant_with_min_max_args_gradient',
'tf.fake_quant_with_min_max_vars': 'tf.quantization.fake_quant_with_min_max_vars',
'tf.fake_quant_with_min_max_vars_gradient': 'tf.quantization.fake_quant_with_min_max_vars_gradient',
'tf.fake_quant_with_min_max_vars_per_channel': 'tf.quantization.fake_quant_with_min_max_vars_per_channel',
'tf.fake_quant_with_min_max_vars_per_channel_gradient': 'tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient',
'tf.fft': 'tf.spectral.fft',
'tf.floor': 'tf.math.floor',
'tf.gather_nd': 'tf.manip.gather_nd',
'tf.greater': 'tf.math.greater',
'tf.greater_equal': 'tf.math.greater_equal',
'tf.ifft': 'tf.spectral.ifft',
'tf.igamma': 'tf.math.igamma',
'tf.igammac': 'tf.math.igammac',
'tf.invert_permutation': 'tf.math.invert_permutation',
'tf.is_finite': 'tf.debugging.is_finite',
'tf.is_inf': 'tf.debugging.is_inf',
'tf.is_nan': 'tf.debugging.is_nan',
'tf.less': 'tf.math.less',
'tf.less_equal': 'tf.math.less_equal',
'tf.lgamma': 'tf.math.lgamma',
'tf.log': 'tf.math.log',
'tf.log1p': 'tf.math.log1p',
'tf.logical_and': 'tf.math.logical_and',
'tf.logical_not': 'tf.math.logical_not',
'tf.logical_or': 'tf.math.logical_or',
'tf.matching_files': 'tf.io.matching_files',
'tf.matrix_band_part': 'tf.linalg.band_part',
'tf.matrix_determinant': 'tf.linalg.det',
'tf.matrix_diag': 'tf.linalg.diag',
'tf.matrix_diag_part': 'tf.linalg.diag_part',
'tf.matrix_inverse': 'tf.linalg.inv',
'tf.matrix_set_diag': 'tf.linalg.set_diag',
'tf.matrix_solve': 'tf.linalg.solve',
'tf.matrix_triangular_solve': 'tf.linalg.triangular_solve',
'tf.maximum': 'tf.math.maximum',
'tf.minimum': 'tf.math.minimum',
'tf.not_equal': 'tf.math.not_equal',
'tf.parse_tensor': 'tf.io.parse_tensor',
'tf.polygamma': 'tf.math.polygamma',
'tf.qr': 'tf.linalg.qr',
'tf.quantized_concat': 'tf.quantization.quantized_concat',
'tf.read_file': 'tf.io.read_file',
'tf.reciprocal': 'tf.math.reciprocal',
'tf.regex_replace': 'tf.strings.regex_replace',
'tf.reshape': 'tf.manip.reshape',
'tf.reverse': 'tf.manip.reverse',
'tf.reverse_v2': 'tf.manip.reverse',
'tf.rint': 'tf.math.rint',
'tf.rsqrt': 'tf.math.rsqrt',
'tf.scatter_nd': 'tf.manip.scatter_nd',
'tf.segment_max': 'tf.math.segment_max',
'tf.segment_mean': 'tf.math.segment_mean',
'tf.segment_min': 'tf.math.segment_min',
'tf.segment_prod': 'tf.math.segment_prod',
'tf.segment_sum': 'tf.math.segment_sum',
'tf.sin': 'tf.math.sin',
'tf.sinh': 'tf.math.sinh',
'tf.space_to_batch_nd': 'tf.manip.space_to_batch_nd',
'tf.squared_difference': 'tf.math.squared_difference',
'tf.string_join': 'tf.strings.join',
'tf.string_strip': 'tf.strings.strip',
'tf.string_to_hash_bucket': 'tf.strings.to_hash_bucket',
'tf.string_to_hash_bucket_fast': 'tf.strings.to_hash_bucket_fast',
'tf.string_to_hash_bucket_strong': 'tf.strings.to_hash_bucket_strong',
'tf.string_to_number': 'tf.strings.to_number',
'tf.substr': 'tf.strings.substr',
'tf.tan': 'tf.math.tan',
'tf.tile': 'tf.manip.tile',
'tf.unsorted_segment_max': 'tf.math.unsorted_segment_max',
'tf.unsorted_segment_min': 'tf.math.unsorted_segment_min',
'tf.unsorted_segment_prod': 'tf.math.unsorted_segment_prod',
'tf.unsorted_segment_sum': 'tf.math.unsorted_segment_sum',
'tf.write_file': 'tf.io.write_file',
'tf.zeta': 'tf.math.zeta'
}

View File

@ -0,0 +1,34 @@
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tf upgrader."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.python.framework import test_util
from tensorflow.python.platform import test as test_lib
class TestUpgrade(test_util.TensorFlowTestCase):
"""Test various APIs that have been changed in 2.0."""
def testRenames(self):
with self.test_session():
self.assertAllClose(1.04719755, tf.acos(0.5).eval())
self.assertAllClose(0.5, tf.rsqrt(4.0).eval())
if __name__ == "__main__":
test_lib.main()

View File

@ -19,491 +19,11 @@ from __future__ import division
from __future__ import print_function
import argparse
import ast
import collections
import os
import shutil
import sys
import tempfile
import traceback
from tensorflow.tools.compatibility import ast_edits
class APIChangeSpec(object):
"""This class defines the transformations that need to happen.
This class must provide the following fields:
* `function_keyword_renames`: maps function names to a map of old -> new
argument names
* `function_renames`: maps function names to new function names
* `change_to_function`: a set of function names that have changed (for
notifications)
* `function_reorders`: maps functions whose argument order has changed to the
list of arguments in the new order
* `function_handle`: maps function names to custom handlers for the function
For an example, see `TFAPIChangeSpec`.
"""
class _FileEditTuple(
collections.namedtuple("_FileEditTuple",
["comment", "line", "start", "old", "new"])):
"""Each edit that is recorded by a _FileEditRecorder.
Fields:
comment: A description of the edit and why it was made.
line: The line number in the file where the edit occurs (1-indexed).
start: The line number in the file where the edit occurs (0-indexed).
old: text string to remove (this must match what was in file).
new: text string to add in place of `old`.
"""
__slots__ = ()
class _FileEditRecorder(object):
"""Record changes that need to be done to the file."""
def __init__(self, filename):
# all edits are lists of chars
self._filename = filename
self._line_to_edit = collections.defaultdict(list)
self._errors = []
def process(self, text):
"""Process a list of strings, each corresponding to the recorded changes.
Args:
text: A list of lines of text (assumed to contain newlines)
Returns:
A tuple of the modified text and a textual description of what is done.
Raises:
ValueError: if substitution source location does not have expected text.
"""
change_report = ""
# Iterate of each line
for line, edits in self._line_to_edit.items():
offset = 0
# sort by column so that edits are processed in order in order to make
# indexing adjustments cumulative for changes that change the string
# length
edits.sort(key=lambda x: x.start)
# Extract each line to a list of characters, because mutable lists
# are editable, unlike immutable strings.
char_array = list(text[line - 1])
# Record a description of the change
change_report += "%r Line %d\n" % (self._filename, line)
change_report += "-" * 80 + "\n\n"
for e in edits:
change_report += "%s\n" % e.comment
change_report += "\n Old: %s" % (text[line - 1])
# Make underscore buffers for underlining where in the line the edit was
change_list = [" "] * len(text[line - 1])
change_list_new = [" "] * len(text[line - 1])
# Iterate for each edit
for e in edits:
# Create effective start, end by accounting for change in length due
# to previous edits
start_eff = e.start + offset
end_eff = start_eff + len(e.old)
# Make sure the edit is changing what it should be changing
old_actual = "".join(char_array[start_eff:end_eff])
if old_actual != e.old:
raise ValueError("Expected text %r but got %r" %
("".join(e.old), "".join(old_actual)))
# Make the edit
char_array[start_eff:end_eff] = list(e.new)
# Create the underline highlighting of the before and after
change_list[e.start:e.start + len(e.old)] = "~" * len(e.old)
change_list_new[start_eff:end_eff] = "~" * len(e.new)
# Keep track of how to generate effective ranges
offset += len(e.new) - len(e.old)
# Finish the report comment
change_report += " %s\n" % "".join(change_list)
text[line - 1] = "".join(char_array)
change_report += " New: %s" % (text[line - 1])
change_report += " %s\n\n" % "".join(change_list_new)
return "".join(text), change_report, self._errors
def add(self, comment, line, start, old, new, error=None):
"""Add a new change that is needed.
Args:
comment: A description of what was changed
line: Line number (1 indexed)
start: Column offset (0 indexed)
old: old text
new: new text
error: this "edit" is something that cannot be fixed automatically
Returns:
None
"""
self._line_to_edit[line].append(
_FileEditTuple(comment, line, start, old, new))
if error:
self._errors.append("%s:%d: %s" % (self._filename, line, error))
class _ASTCallVisitor(ast.NodeVisitor):
"""AST Visitor that processes function calls.
Updates function calls from old API version to new API version using a given
change spec.
"""
def __init__(self, filename, lines, api_change_spec):
self._filename = filename
self._file_edit = _FileEditRecorder(filename)
self._lines = lines
self._api_change_spec = api_change_spec
def process(self, lines):
return self._file_edit.process(lines)
def generic_visit(self, node):
ast.NodeVisitor.generic_visit(self, node)
def _rename_functions(self, node, full_name):
function_renames = self._api_change_spec.function_renames
try:
new_name = function_renames[full_name]
self._file_edit.add("Renamed function %r to %r" % (full_name, new_name),
node.lineno, node.col_offset, full_name, new_name)
except KeyError:
pass
def _get_attribute_full_path(self, node):
"""Traverse an attribute to generate a full name e.g. tf.foo.bar.
Args:
node: A Node of type Attribute.
Returns:
a '.'-delimited full-name or None if the tree was not a simple form.
i.e. `foo()+b).bar` returns None, while `a.b.c` would return "a.b.c".
"""
curr = node
items = []
while not isinstance(curr, ast.Name):
if not isinstance(curr, ast.Attribute):
return None
items.append(curr.attr)
curr = curr.value
items.append(curr.id)
return ".".join(reversed(items))
def _find_true_position(self, node):
"""Return correct line number and column offset for a given node.
This is necessary mainly because ListComp's location reporting reports
the next token after the list comprehension list opening.
Args:
node: Node for which we wish to know the lineno and col_offset
"""
import re
find_open = re.compile("^\s*(\\[).*$")
find_string_chars = re.compile("['\"]")
if isinstance(node, ast.ListComp):
# Strangely, ast.ListComp returns the col_offset of the first token
# after the '[' token which appears to be a bug. Workaround by
# explicitly finding the real start of the list comprehension.
line = node.lineno
col = node.col_offset
# loop over lines
while 1:
# Reverse the text to and regular expression search for whitespace
text = self._lines[line - 1]
reversed_preceding_text = text[:col][::-1]
# First find if a [ can be found with only whitespace between it and
# col.
m = find_open.match(reversed_preceding_text)
if m:
new_col_offset = col - m.start(1) - 1
return line, new_col_offset
else:
if (reversed_preceding_text == "" or
reversed_preceding_text.isspace()):
line = line - 1
prev_line = self._lines[line - 1]
# TODO(aselle):
# this is poor comment detection, but it is good enough for
# cases where the comment does not contain string literal starting/
# ending characters. If ast gave us start and end locations of the
# ast nodes rather than just start, we could use string literal
# node ranges to filter out spurious #'s that appear in string
# literals.
comment_start = prev_line.find("#")
if comment_start == -1:
col = len(prev_line) - 1
elif find_string_chars.search(prev_line[comment_start:]) is None:
col = comment_start
else:
return None, None
else:
return None, None
# Most other nodes return proper locations (with notably does not), but
# it is not possible to use that in an argument.
return node.lineno, node.col_offset
def visit_Call(self, node): # pylint: disable=invalid-name
"""Handle visiting a call node in the AST.
Args:
node: Current Node
"""
# Find a simple attribute name path e.g. "tf.foo.bar"
full_name = self._get_attribute_full_path(node.func)
# Make sure the func is marked as being part of a call
node.func.is_function_for_call = True
if full_name:
# Call special handlers
function_handles = self._api_change_spec.function_handle
if full_name in function_handles:
function_handles[full_name](self._file_edit, node)
# Examine any non-keyword argument and make it into a keyword argument
# if reordering required.
function_reorders = self._api_change_spec.function_reorders
function_keyword_renames = (
self._api_change_spec.function_keyword_renames)
if full_name in function_reorders:
reordered = function_reorders[full_name]
for idx, arg in enumerate(node.args):
lineno, col_offset = self._find_true_position(arg)
if lineno is None or col_offset is None:
self._file_edit.add(
"Failed to add keyword %r to reordered function %r" %
(reordered[idx], full_name),
arg.lineno,
arg.col_offset,
"",
"",
error="A necessary keyword argument failed to be inserted.")
else:
keyword_arg = reordered[idx]
if (full_name in function_keyword_renames and
keyword_arg in function_keyword_renames[full_name]):
keyword_arg = function_keyword_renames[full_name][keyword_arg]
self._file_edit.add("Added keyword %r to reordered function %r" %
(reordered[idx], full_name), lineno, col_offset,
"", keyword_arg + "=")
# Examine each keyword argument and convert it to the final renamed form
renamed_keywords = ({} if full_name not in function_keyword_renames else
function_keyword_renames[full_name])
for keyword in node.keywords:
argkey = keyword.arg
argval = keyword.value
if argkey in renamed_keywords:
argval_lineno, argval_col_offset = self._find_true_position(argval)
if argval_lineno is not None and argval_col_offset is not None:
# TODO(aselle): We should scan backward to find the start of the
# keyword key. Unfortunately ast does not give you the location of
# keyword keys, so we are forced to infer it from the keyword arg
# value.
key_start = argval_col_offset - len(argkey) - 1
key_end = key_start + len(argkey) + 1
if (self._lines[argval_lineno - 1][key_start:key_end] == argkey +
"="):
self._file_edit.add("Renamed keyword argument from %r to %r" %
(argkey,
renamed_keywords[argkey]), argval_lineno,
argval_col_offset - len(argkey) - 1,
argkey + "=", renamed_keywords[argkey] + "=")
continue
self._file_edit.add(
"Failed to rename keyword argument from %r to %r" %
(argkey, renamed_keywords[argkey]),
argval.lineno,
argval.col_offset - len(argkey) - 1,
"",
"",
error="Failed to find keyword lexographically. Fix manually.")
ast.NodeVisitor.generic_visit(self, node)
def visit_Attribute(self, node): # pylint: disable=invalid-name
"""Handle bare Attributes i.e. [tf.foo, tf.bar].
Args:
node: Node that is of type ast.Attribute
"""
full_name = self._get_attribute_full_path(node)
if full_name:
self._rename_functions(node, full_name)
if full_name in self._api_change_spec.change_to_function:
if not hasattr(node, "is_function_for_call"):
new_text = full_name + "()"
self._file_edit.add("Changed %r to %r" % (full_name, new_text),
node.lineno, node.col_offset, full_name, new_text)
ast.NodeVisitor.generic_visit(self, node)
class ASTCodeUpgrader(object):
"""Handles upgrading a set of Python files using a given API change spec."""
def __init__(self, api_change_spec):
if not isinstance(api_change_spec, APIChangeSpec):
raise TypeError("Must pass APIChangeSpec to ASTCodeUpgrader, got %s" %
type(api_change_spec))
self._api_change_spec = api_change_spec
def process_file(self, in_filename, out_filename):
"""Process the given python file for incompatible changes.
Args:
in_filename: filename to parse
out_filename: output file to write to
Returns:
A tuple representing number of files processed, log of actions, errors
"""
# Write to a temporary file, just in case we are doing an implace modify.
with open(in_filename, "r") as in_file, \
tempfile.NamedTemporaryFile("w", delete=False) as temp_file:
ret = self.process_opened_file(in_filename, in_file, out_filename,
temp_file)
shutil.move(temp_file.name, out_filename)
return ret
# Broad exceptions are required here because ast throws whatever it wants.
# pylint: disable=broad-except
def process_opened_file(self, in_filename, in_file, out_filename, out_file):
"""Process the given python file for incompatible changes.
This function is split out to facilitate StringIO testing from
tf_upgrade_test.py.
Args:
in_filename: filename to parse
in_file: opened file (or StringIO)
out_filename: output file to write to
out_file: opened file (or StringIO)
Returns:
A tuple representing number of files processed, log of actions, errors
"""
process_errors = []
text = "-" * 80 + "\n"
text += "Processing file %r\n outputting to %r\n" % (in_filename,
out_filename)
text += "-" * 80 + "\n\n"
parsed_ast = None
lines = in_file.readlines()
try:
parsed_ast = ast.parse("".join(lines))
except Exception:
text += "Failed to parse %r\n\n" % in_filename
text += traceback.format_exc()
if parsed_ast:
visitor = _ASTCallVisitor(in_filename, lines, self._api_change_spec)
visitor.visit(parsed_ast)
out_text, new_text, process_errors = visitor.process(lines)
text += new_text
if out_file:
out_file.write(out_text)
text += "\n"
return 1, text, process_errors
# pylint: enable=broad-except
def process_tree(self, root_directory, output_root_directory,
copy_other_files):
"""Processes upgrades on an entire tree of python files in place.
Note that only Python files. If you have custom code in other languages,
you will need to manually upgrade those.
Args:
root_directory: Directory to walk and process.
output_root_directory: Directory to use as base.
copy_other_files: Copy files that are not touched by this converter.
Returns:
A tuple of files processed, the report string ofr all files, and errors
"""
# make sure output directory doesn't exist
if output_root_directory and os.path.exists(output_root_directory):
print("Output directory %r must not already exist." %
(output_root_directory))
sys.exit(1)
# make sure output directory does not overlap with root_directory
norm_root = os.path.split(os.path.normpath(root_directory))
norm_output = os.path.split(os.path.normpath(output_root_directory))
if norm_root == norm_output:
print("Output directory %r same as input directory %r" %
(root_directory, output_root_directory))
sys.exit(1)
# Collect list of files to process (we do this to correctly handle if the
# user puts the output directory in some sub directory of the input dir)
files_to_process = []
files_to_copy = []
for dir_name, _, file_list in os.walk(root_directory):
py_files = [f for f in file_list if f.endswith(".py")]
copy_files = [f for f in file_list if not f.endswith(".py")]
for filename in py_files:
fullpath = os.path.join(dir_name, filename)
fullpath_output = os.path.join(output_root_directory,
os.path.relpath(fullpath,
root_directory))
files_to_process.append((fullpath, fullpath_output))
if copy_other_files:
for filename in copy_files:
fullpath = os.path.join(dir_name, filename)
fullpath_output = os.path.join(output_root_directory,
os.path.relpath(
fullpath, root_directory))
files_to_copy.append((fullpath, fullpath_output))
file_count = 0
tree_errors = []
report = ""
report += ("=" * 80) + "\n"
report += "Input tree: %r\n" % root_directory
report += ("=" * 80) + "\n"
for input_path, output_path in files_to_process:
output_directory = os.path.dirname(output_path)
if not os.path.isdir(output_directory):
os.makedirs(output_directory)
file_count += 1
_, l_report, l_errors = self.process_file(input_path, output_path)
tree_errors += l_errors
report += l_report
for input_path, output_path in files_to_copy:
output_directory = os.path.dirname(output_path)
if not os.path.isdir(output_directory):
os.makedirs(output_directory)
shutil.copy(input_path, output_path)
return file_count, report, tree_errors
class TFAPIChangeSpec(APIChangeSpec):
class TFAPIChangeSpec(ast_edits.APIChangeSpec):
"""List of maps that describe what changed in the API."""
def __init__(self):
@ -718,7 +238,7 @@ Simple usage:
default="report.txt")
args = parser.parse_args()
upgrade = ASTCodeUpgrader(TFAPIChangeSpec())
upgrade = ast_edits.ASTCodeUpgrader(TFAPIChangeSpec())
report_text = None
report_filename = args.report_filename
files_processed = 0

View File

@ -22,6 +22,7 @@ import tempfile
import six
from tensorflow.python.framework import test_util
from tensorflow.python.platform import test as test_lib
from tensorflow.tools.compatibility import ast_edits
from tensorflow.tools.compatibility import tf_upgrade
@ -36,7 +37,7 @@ class TestUpgrade(test_util.TensorFlowTestCase):
def _upgrade(self, old_file_text):
in_file = six.StringIO(old_file_text)
out_file = six.StringIO()
upgrader = tf_upgrade.ASTCodeUpgrader(tf_upgrade.TFAPIChangeSpec())
upgrader = ast_edits.ASTCodeUpgrader(tf_upgrade.TFAPIChangeSpec())
count, report, errors = (
upgrader.process_opened_file("test.py", in_file,
"test_out.py", out_file))
@ -139,7 +140,7 @@ class TestUpgradeFiles(test_util.TensorFlowTestCase):
upgraded = "tf.multiply(a, b)\n"
temp_file.write(original)
temp_file.close()
upgrader = tf_upgrade.ASTCodeUpgrader(tf_upgrade.TFAPIChangeSpec())
upgrader = ast_edits.ASTCodeUpgrader(tf_upgrade.TFAPIChangeSpec())
upgrader.process_file(temp_file.name, temp_file.name)
self.assertAllEqual(open(temp_file.name).read(), upgraded)
os.unlink(temp_file.name)

View File

@ -0,0 +1,115 @@
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Upgrader for Python scripts from 1.* TensorFlow to 2.0 TensorFlow."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
from tensorflow.tools.compatibility import ast_edits
from tensorflow.tools.compatibility import renames_v2
class TFAPIChangeSpec(ast_edits.APIChangeSpec):
"""List of maps that describe what changed in the API."""
def __init__(self):
# Maps from a function name to a dictionary that describes how to
# map from an old argument keyword to the new argument keyword.
self.function_keyword_renames = {}
# Mapping from function to the new name of the function
self.function_renames = renames_v2.renames
# Variables that should be changed to functions.
self.change_to_function = {}
# Functions that were reordered should be changed to the new keyword args
# for safety, if positional arguments are used. If you have reversed the
# positional arguments yourself, this could do the wrong thing.
self.function_reorders = {}
# Specially handled functions.
self.function_handle = {}
if __name__ == "__main__":
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="""Convert a TensorFlow Python file to 2.0
Simple usage:
tf_convert_v2.py --infile foo.py --outfile bar.py
tf_convert_v2.py --intree ~/code/old --outtree ~/code/new
""")
parser.add_argument(
"--infile",
dest="input_file",
help="If converting a single file, the name of the file "
"to convert")
parser.add_argument(
"--outfile",
dest="output_file",
help="If converting a single file, the output filename.")
parser.add_argument(
"--intree",
dest="input_tree",
help="If converting a whole tree of files, the directory "
"to read from (relative or absolute).")
parser.add_argument(
"--outtree",
dest="output_tree",
help="If converting a whole tree of files, the output "
"directory (relative or absolute).")
parser.add_argument(
"--copyotherfiles",
dest="copy_other_files",
help=("If converting a whole tree of files, whether to "
"copy the other files."),
type=bool,
default=False)
parser.add_argument(
"--reportfile",
dest="report_filename",
help=("The name of the file where the report log is "
"stored."
"(default: %(default)s)"),
default="report.txt")
args = parser.parse_args()
upgrade = ast_edits.ASTCodeUpgrader(TFAPIChangeSpec())
report_text = None
report_filename = args.report_filename
files_processed = 0
if args.input_file:
files_processed, report_text, errors = upgrade.process_file(
args.input_file, args.output_file)
files_processed = 1
elif args.input_tree:
files_processed, report_text, errors = upgrade.process_tree(
args.input_tree, args.output_tree, args.copy_other_files)
else:
parser.print_help()
if report_text:
open(report_filename, "w").write(report_text)
print("TensorFlow 2.0 Upgrade Script")
print("-----------------------------")
print("Converted %d files\n" % files_processed)
print("Detected %d errors that require attention" % len(errors))
print("-" * 80)
print("\n".join(errors))
print("\nMake sure to read the detailed log %r\n" % report_filename)

View File

@ -0,0 +1,83 @@
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tf 2.0 upgrader."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tempfile
import six
from tensorflow.python.framework import test_util
from tensorflow.python.platform import test as test_lib
from tensorflow.tools.compatibility import ast_edits
from tensorflow.tools.compatibility import tf_upgrade_v2
class TestUpgrade(test_util.TensorFlowTestCase):
"""Test various APIs that have been changed in 2.0.
We also test whether a converted file is executable. test_file_v1_10.py
aims to exhaustively test that API changes are convertible and actually
work when run with current TensorFlow.
"""
def _upgrade(self, old_file_text):
in_file = six.StringIO(old_file_text)
out_file = six.StringIO()
upgrader = ast_edits.ASTCodeUpgrader(tf_upgrade_v2.TFAPIChangeSpec())
count, report, errors = (
upgrader.process_opened_file("test.py", in_file,
"test_out.py", out_file))
return count, report, errors, out_file.getvalue()
def testParseError(self):
_, report, unused_errors, unused_new_text = self._upgrade(
"import tensorflow as tf\na + \n")
self.assertTrue(report.find("Failed to parse") != -1)
def testReport(self):
text = "tf.acos(a)\n"
_, report, unused_errors, unused_new_text = self._upgrade(text)
# This is not a complete test, but it is a sanity test that a report
# is generating information.
self.assertTrue(report.find("Renamed function `tf.acos` to `tf.math.acos`"))
def testRename(self):
text = "tf.acos(a)\n"
_, unused_report, unused_errors, new_text = self._upgrade(text)
self.assertEqual(new_text, "tf.math.acos(a)\n")
text = "tf.rsqrt(tf.log(3.8))\n"
_, unused_report, unused_errors, new_text = self._upgrade(text)
self.assertEqual(new_text, "tf.math.rsqrt(tf.math.log(3.8))\n")
class TestUpgradeFiles(test_util.TensorFlowTestCase):
def testInplace(self):
"""Check to make sure we don't have a file system race."""
temp_file = tempfile.NamedTemporaryFile("w", delete=False)
original = "tf.acos(a, b)\n"
upgraded = "tf.math.acos(a, b)\n"
temp_file.write(original)
temp_file.close()
upgrader = ast_edits.ASTCodeUpgrader(tf_upgrade_v2.TFAPIChangeSpec())
upgrader.process_file(temp_file.name, temp_file.name)
self.assertAllEqual(open(temp_file.name).read(), upgraded)
os.unlink(temp_file.name)
if __name__ == "__main__":
test_lib.main()

View File

@ -0,0 +1,15 @@
licenses(["notice"]) # Apache 2.0
package(default_visibility = ["//visibility:private"])
py_binary(
name = "generate_v2_renames_map",
srcs = ["generate_v2_renames_map.py"],
srcs_version = "PY2AND3",
deps = [
"//tensorflow:tensorflow_py",
"//tensorflow/python:lib",
"//tensorflow/tools/common:public_api",
"//tensorflow/tools/common:traverse",
],
)

View File

@ -0,0 +1,103 @@
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=line-too-long
"""Script for updating tensorflow/tools/compatibility/renames_v2.py.
To update renames_v2.py, run:
bazel build tensorflow/tools/compatibility/update:generate_v2_renames_map
bazel-bin/tensorflow/tools/compatibility/update/generate_v2_renames_map
"""
# pylint: enable=line-too-long
import tensorflow as tf
from tensorflow.python.lib.io import file_io
from tensorflow.python.util import tf_decorator
from tensorflow.python.util import tf_export
from tensorflow.tools.common import public_api
from tensorflow.tools.common import traverse
_OUTPUT_FILE_PATH = 'third_party/tensorflow/tools/compatibility/renames_v2.py'
_FILE_HEADER = """# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=line-too-long
\"\"\"List of renames to apply when converting from TF 1.0 to TF 2.0.
THIS FILE IS AUTOGENERATED: To update, please run:
bazel build tensorflow/tools/compatibility/update:generate_v2_renames_map
bazel-bin/tensorflow/tools/compatibility/update/generate_v2_renames_map
This file should be updated whenever endpoints are deprecated.
\"\"\"
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
"""
def update_renames_v2(output_file_path):
"""Writes a Python dictionary mapping deprecated to canonical API names.
Args:
output_file_path: File path to write output to. Any existing contents
would be replaced.
"""
# Set of rename lines to write to output file in the form:
# 'tf.deprecated_name': 'tf.canonical_name'
rename_line_set = set()
# _tf_api_names attribute name
tensorflow_api_attr = tf_export.API_ATTRS[tf_export.TENSORFLOW_API_NAME].names
def visit(unused_path, unused_parent, children):
"""Visitor that collects rename strings to add to rename_line_set."""
for child in children:
_, attr = tf_decorator.unwrap(child[1])
if not hasattr(attr, '__dict__'):
continue
api_names = attr.__dict__.get(tensorflow_api_attr, [])
deprecated_api_names = attr.__dict__.get('_tf_deprecated_api_names', [])
canonical_name = tf_export.get_canonical_name(
api_names, deprecated_api_names)
for name in deprecated_api_names:
rename_line_set.add(' \'tf.%s\': \'tf.%s\'' % (name, canonical_name))
visitor = public_api.PublicAPIVisitor(visit)
visitor.do_not_descend_map['tf'].append('contrib')
traverse.traverse(tf, visitor)
renames_file_text = '%srenames = {\n%s\n}\n' % (
_FILE_HEADER, ',\n'.join(sorted(rename_line_set)))
file_io.write_string_to_file(output_file_path, renames_file_text)
def main(unused_argv):
update_renames_v2(_OUTPUT_FILE_PATH)
if __name__ == '__main__':
tf.app.run(main=main)