Add code-fences to doctest blocks.
Most >>> blocks already have ``` fences. Doctest runs them with or without the fences. This change adds the ``` anywhere they're missing when api docs are generated from the docstrings. This will ensure that they look right when viewed as markdown. + fix docstring for `constant_initializer`: you can't have blank lines inside a doctest block. This prevents the rendering from getting corrupted. PiperOrigin-RevId: 267009925
This commit is contained in:
parent
fe6529d095
commit
76ca9f1060
@ -173,50 +173,42 @@ class Constant(Initializer):
|
||||
of the `value` list, even reshaped, as shown in the two commented lines
|
||||
below the `value` list initialization.
|
||||
|
||||
```python
|
||||
>>> import numpy as np
|
||||
>>> import tensorflow as tf
|
||||
|
||||
>>> value = [0, 1, 2, 3, 4, 5, 6, 7]
|
||||
>>> # value = np.array(value)
|
||||
>>> # value = value.reshape([2, 4])
|
||||
>>> init = tf.compat.v1.constant_initializer(value)
|
||||
|
||||
>>> print('fitting shape:')
|
||||
>>> with tf.compat.v1.Session():
|
||||
>>> x = tf.compat.v1.get_variable('x', shape=[2, 4], initializer=init)
|
||||
>>> x.initializer.run()
|
||||
>>> print(x.eval())
|
||||
|
||||
fitting shape:
|
||||
[[ 0. 1. 2. 3.]
|
||||
[ 4. 5. 6. 7.]]
|
||||
|
||||
>>> print('larger shape:')
|
||||
>>> with tf.compat.v1.Session():
|
||||
>>> x = tf.compat.v1.get_variable('x', shape=[3, 4], initializer=init)
|
||||
>>> x.initializer.run()
|
||||
>>> print(x.eval())
|
||||
|
||||
larger shape:
|
||||
[[ 0. 1. 2. 3.]
|
||||
[ 4. 5. 6. 7.]
|
||||
[ 7. 7. 7. 7.]]
|
||||
|
||||
>>> print('smaller shape:')
|
||||
>>> with tf.compat.v1.Session():
|
||||
>>> x = tf.compat.v1.get_variable('x', shape=[2, 3], initializer=init)
|
||||
|
||||
ValueError: Too many elements provided. Needed at most 6, but received 8
|
||||
|
||||
>>> print('shape verification:')
|
||||
>>> init_verify = tf.compat.v1.constant_initializer(value,
|
||||
verify_shape=True)
|
||||
>>> with tf.compat.v1.Session():
|
||||
>>> x = tf.compat.v1.get_variable('x', shape=[3, 4],
|
||||
initializer=init_verify)
|
||||
|
||||
TypeError: Expected Tensor's shape: (3, 4), got (8,).
|
||||
```
|
||||
>>> value = [0, 1, 2, 3, 4, 5, 6, 7]
|
||||
>>> # value = np.array(value)
|
||||
>>> # value = value.reshape([2, 4])
|
||||
>>> init = tf.compat.v1.constant_initializer(value)
|
||||
>>>
|
||||
>>> # fitting shape
|
||||
>>> with tf.compat.v1.Session():
|
||||
... x = tf.compat.v1.get_variable('x', shape=[2, 4], initializer=init)
|
||||
... x.initializer.run()
|
||||
... print(x.eval())
|
||||
[[0. 1. 2. 3.]
|
||||
[4. 5. 6. 7.]]
|
||||
>>>
|
||||
>>> # Larger shape
|
||||
>>> with tf.compat.v1.Session():
|
||||
... x = tf.compat.v1.get_variable('x', shape=[3, 4], initializer=init)
|
||||
... x.initializer.run()
|
||||
... print(x.eval())
|
||||
[[ 0. 1. 2. 3.]
|
||||
[ 4. 5. 6. 7.]
|
||||
[ 7. 7. 7. 7.]]
|
||||
>>>
|
||||
>>> # Smaller shape
|
||||
>>> with tf.compat.v1.Session():
|
||||
... x = tf.compat.v1.get_variable('x', shape=[2, 3], initializer=init)
|
||||
ValueError: Too many elements provided. Needed at most 6, but received 8
|
||||
>>>
|
||||
>>> # Shape verification
|
||||
>>> init_verify = tf.compat.v1.constant_initializer(value,
|
||||
verify_shape=True)
|
||||
>>> with tf.compat.v1.Session():
|
||||
... x = tf.compat.v1.get_variable('x', shape=[3, 4],
|
||||
... initializer=init_verify)
|
||||
TypeError: Expected Tensor's shape: (3, 4), got (8,).
|
||||
>>>
|
||||
```
|
||||
"""
|
||||
|
||||
|
@ -150,40 +150,31 @@ class Constant(Initializer):
|
||||
below the `value` list initialization.
|
||||
|
||||
```python
|
||||
>>> import numpy as np
|
||||
>>> import tensorflow as tf
|
||||
>>> value = [0, 1, 2, 3, 4, 5, 6, 7]
|
||||
>>> # value = np.array(value)
|
||||
>>> # value = value.reshape([2, 4])
|
||||
>>> init = tf.compat.v1.constant_initializer(value)
|
||||
>>>
|
||||
>>> # Fitting shape
|
||||
>>> with tf.compat.v1.Session():
|
||||
... x = tf.compat.v1.get_variable('x', shape=[2, 4], initializer=init)
|
||||
... x.initializer.run()
|
||||
... print(x.eval())
|
||||
[[0. 1. 2. 3.]
|
||||
[4. 5. 6. 7.]]
|
||||
>>> # Larger shape
|
||||
>>> with tf.compat.v1.Session():
|
||||
... x = tf.compat.v1.get_variable('x', shape=[3, 4], initializer=init)
|
||||
... x.initializer.run()
|
||||
... print(x.eval())
|
||||
[[ 0. 1. 2. 3.]
|
||||
[ 4. 5. 6. 7.]
|
||||
[ 7. 7. 7. 7.]]
|
||||
>>> # Smaller shape
|
||||
>>> with tf.compat.v1.Session():
|
||||
... x = tf.compat.v1.get_variable('x', shape=[2, 3], initializer=init)
|
||||
ValueError: Too many elements provided. Needed at most 6, but received 8
|
||||
|
||||
>>> value = [0, 1, 2, 3, 4, 5, 6, 7]
|
||||
>>> # value = np.array(value)
|
||||
>>> # value = value.reshape([2, 4])
|
||||
>>> init = tf.compat.v1.constant_initializer(value)
|
||||
|
||||
>>> print('fitting shape:')
|
||||
>>> with tf.compat.v1.Session():
|
||||
>>> x = tf.compat.v1.get_variable('x', shape=[2, 4], initializer=init)
|
||||
>>> x.initializer.run()
|
||||
>>> print(x.eval())
|
||||
|
||||
fitting shape:
|
||||
[[ 0. 1. 2. 3.]
|
||||
[ 4. 5. 6. 7.]]
|
||||
|
||||
>>> print('larger shape:')
|
||||
>>> with tf.compat.v1.Session():
|
||||
>>> x = tf.compat.v1.get_variable('x', shape=[3, 4], initializer=init)
|
||||
>>> x.initializer.run()
|
||||
>>> print(x.eval())
|
||||
|
||||
larger shape:
|
||||
[[ 0. 1. 2. 3.]
|
||||
[ 4. 5. 6. 7.]
|
||||
[ 7. 7. 7. 7.]]
|
||||
|
||||
>>> print('smaller shape:')
|
||||
>>> with tf.compat.v1.Session():
|
||||
>>> x = tf.compat.v1.get_variable('x', shape=[2, 3], initializer=init)
|
||||
|
||||
ValueError: Too many elements provided. Needed at most 6, but received 8
|
||||
```
|
||||
"""
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user