Go: Update generated wrapper functions for TensorFlow ops.
PiperOrigin-RevId: 308353110 Change-Id: Ib648a4149c35212609b313d1e48da7db6b9e5788
This commit is contained in:
parent
a4e22aa1c4
commit
7550e571ac
@ -6915,9 +6915,7 @@ func GetSessionHandle(scope *Scope, value tf.Output) (handle tf.Output) {
|
||||
return op.Output(0)
|
||||
}
|
||||
|
||||
// Copy a tensor setting everything outside a central band in each innermost matrix
|
||||
//
|
||||
// to zero.
|
||||
// Copy a tensor setting everything outside a central band in each innermost matrix to zero.
|
||||
//
|
||||
// The `band` part is computed as follows:
|
||||
// Assume `input` has `k` dimensions `[I, J, K, ..., M, N]`, then the output is a
|
||||
@ -11935,7 +11933,7 @@ func SampleDistortedBoundingBoxMinObjectCovered(value float32) SampleDistortedBo
|
||||
//
|
||||
// value: The cropped area of the image must have an aspect ratio =
|
||||
// width / height within this range.
|
||||
// If not specified, defaults to {f:0.75 f:1.33}
|
||||
// If not specified, defaults to {f:0.75 f:1.33}
|
||||
func SampleDistortedBoundingBoxAspectRatioRange(value []float32) SampleDistortedBoundingBoxAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["aspect_ratio_range"] = value
|
||||
@ -11946,7 +11944,7 @@ func SampleDistortedBoundingBoxAspectRatioRange(value []float32) SampleDistorted
|
||||
//
|
||||
// value: The cropped area of the image must contain a fraction of the
|
||||
// supplied image within this range.
|
||||
// If not specified, defaults to {f:0.05 f:1}
|
||||
// If not specified, defaults to {f:0.05 f:1}
|
||||
func SampleDistortedBoundingBoxAreaRange(value []float32) SampleDistortedBoundingBoxAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["area_range"] = value
|
||||
@ -18622,7 +18620,7 @@ func SampleDistortedBoundingBoxV2Seed2(value int64) SampleDistortedBoundingBoxV2
|
||||
//
|
||||
// value: The cropped area of the image must have an aspect ratio =
|
||||
// width / height within this range.
|
||||
// If not specified, defaults to {f:0.75 f:1.33}
|
||||
// If not specified, defaults to {f:0.75 f:1.33}
|
||||
func SampleDistortedBoundingBoxV2AspectRatioRange(value []float32) SampleDistortedBoundingBoxV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["aspect_ratio_range"] = value
|
||||
@ -18633,7 +18631,7 @@ func SampleDistortedBoundingBoxV2AspectRatioRange(value []float32) SampleDistort
|
||||
//
|
||||
// value: The cropped area of the image must contain a fraction of the
|
||||
// supplied image within this range.
|
||||
// If not specified, defaults to {f:0.05 f:1}
|
||||
// If not specified, defaults to {f:0.05 f:1}
|
||||
func SampleDistortedBoundingBoxV2AreaRange(value []float32) SampleDistortedBoundingBoxV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["area_range"] = value
|
||||
@ -19037,7 +19035,7 @@ func ImageSummaryMaxImages(value int64) ImageSummaryAttr {
|
||||
// ImageSummaryBadColor sets the optional bad_color attribute to value.
|
||||
//
|
||||
// value: Color to use for pixels with non-finite values.
|
||||
// If not specified, defaults to {dtype:DT_UINT8 tensor_shape:{dim:{size:4}} int_val:255 int_val:0 int_val:0 int_val:255}
|
||||
// If not specified, defaults to {dtype:DT_UINT8 tensor_shape:{dim:{size:4}} int_val:255 int_val:0 int_val:0 int_val:255}
|
||||
func ImageSummaryBadColor(value tf.Tensor) ImageSummaryAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["bad_color"] = value
|
||||
@ -20108,7 +20106,7 @@ func Conv3DBackpropFilterV2DataFormat(value string) Conv3DBackpropFilterV2Attr {
|
||||
// filter element on that dimension. The dimension order is determined by the
|
||||
// value of `data_format`, see above for details. Dilations in the batch and
|
||||
// depth dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
func Conv3DBackpropFilterV2Dilations(value []int64) Conv3DBackpropFilterV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -21280,7 +21278,7 @@ func Conv2DBackpropInputDataFormat(value string) Conv2DBackpropInputAttr {
|
||||
// element on that dimension. The dimension order is determined by the value of
|
||||
// `data_format`, see above for details. Dilations in the batch and depth
|
||||
// dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func Conv2DBackpropInputDilations(value []int64) Conv2DBackpropInputAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -21988,7 +21986,7 @@ func Conv2DDataFormat(value string) Conv2DAttr {
|
||||
// filter element on that dimension. The dimension order is determined by the
|
||||
// value of `data_format`, see above for details. Dilations in the batch and
|
||||
// depth dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func Conv2DDilations(value []int64) Conv2DAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -22184,7 +22182,7 @@ func QuantizedDepthwiseConv2DWithBiasAndReluAndRequantizeOutType(value tf.DataTy
|
||||
// QuantizedDepthwiseConv2DWithBiasAndReluAndRequantizeDilations sets the optional dilations attribute to value.
|
||||
//
|
||||
// value: List of dilation values.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func QuantizedDepthwiseConv2DWithBiasAndReluAndRequantizeDilations(value []int64) QuantizedDepthwiseConv2DWithBiasAndReluAndRequantizeAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -22253,7 +22251,7 @@ func QuantizedDepthwiseConv2DWithBiasAndReluOutType(value tf.DataType) Quantized
|
||||
// QuantizedDepthwiseConv2DWithBiasAndReluDilations sets the optional dilations attribute to value.
|
||||
//
|
||||
// value: List of dilation values.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func QuantizedDepthwiseConv2DWithBiasAndReluDilations(value []int64) QuantizedDepthwiseConv2DWithBiasAndReluAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -22368,7 +22366,7 @@ func QuantizedDepthwiseConv2DWithBiasOutType(value tf.DataType) QuantizedDepthwi
|
||||
// QuantizedDepthwiseConv2DWithBiasDilations sets the optional dilations attribute to value.
|
||||
//
|
||||
// value: List of dilation values.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func QuantizedDepthwiseConv2DWithBiasDilations(value []int64) QuantizedDepthwiseConv2DWithBiasAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -22427,7 +22425,7 @@ func QuantizedDepthwiseConv2DOutType(value tf.DataType) QuantizedDepthwiseConv2D
|
||||
// QuantizedDepthwiseConv2DDilations sets the optional dilations attribute to value.
|
||||
//
|
||||
// value: List of dilation values.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func QuantizedDepthwiseConv2DDilations(value []int64) QuantizedDepthwiseConv2DAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -22601,7 +22599,7 @@ func QuantizedConv2DPerChannelOutType(value tf.DataType) QuantizedConv2DPerChann
|
||||
// QuantizedConv2DPerChannelDilations sets the optional dilations attribute to value.
|
||||
//
|
||||
// value: list of dilation values.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func QuantizedConv2DPerChannelDilations(value []int64) QuantizedConv2DPerChannelAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -22978,7 +22976,7 @@ func Conv3DBackpropInputV2DataFormat(value string) Conv3DBackpropInputV2Attr {
|
||||
// filter element on that dimension. The dimension order is determined by the
|
||||
// value of `data_format`, see above for details. Dilations in the batch and
|
||||
// depth dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
func Conv3DBackpropInputV2Dilations(value []int64) Conv3DBackpropInputV2Attr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -25298,7 +25296,7 @@ func AvgPool3DGrad(scope *Scope, orig_input_shape tf.Output, grad tf.Output, ksi
|
||||
type Conv3DBackpropFilterAttr func(optionalAttr)
|
||||
|
||||
// Conv3DBackpropFilterDilations sets the optional dilations attribute to value.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
func Conv3DBackpropFilterDilations(value []int64) Conv3DBackpropFilterAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -25361,7 +25359,7 @@ func Conv3DDataFormat(value string) Conv3DAttr {
|
||||
// filter element on that dimension. The dimension order is determined by the
|
||||
// value of `data_format`, see above for details. Dilations in the batch and
|
||||
// depth dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
func Conv3DDilations(value []int64) Conv3DAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -25612,7 +25610,7 @@ func DepthwiseConv2dNativeBackpropInputDataFormat(value string) DepthwiseConv2dN
|
||||
// element on that dimension. The dimension order is determined by the value of
|
||||
// `data_format`, see above for details. Dilations in the batch and depth
|
||||
// dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func DepthwiseConv2dNativeBackpropInputDilations(value []int64) DepthwiseConv2dNativeBackpropInputAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -26096,7 +26094,7 @@ func QuantizedConv2DOutType(value tf.DataType) QuantizedConv2DAttr {
|
||||
// filter element on that dimension. The dimension order is determined by the
|
||||
// value of `data_format`, see above for details. Dilations in the batch and
|
||||
// depth dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func QuantizedConv2DDilations(value []int64) QuantizedConv2DAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -40144,9 +40142,9 @@ func ResourceApplyMomentumUseNesterov(value bool) ResourceApplyMomentumAttr {
|
||||
}
|
||||
}
|
||||
|
||||
// Update '*var' according to the momentum scheme. Set use_nesterov = True if you
|
||||
// Update '*var' according to the momentum scheme.
|
||||
//
|
||||
// want to use Nesterov momentum.
|
||||
// Set use_nesterov = True if you want to use Nesterov momentum.
|
||||
//
|
||||
// accum = accum * momentum + grad
|
||||
// var -= lr * accum
|
||||
@ -40349,7 +40347,7 @@ func DepthwiseConv2dNativeBackpropFilterDataFormat(value string) DepthwiseConv2d
|
||||
// element on that dimension. The dimension order is determined by the value of
|
||||
// `data_format`, see above for details. Dilations in the batch and depth
|
||||
// dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func DepthwiseConv2dNativeBackpropFilterDilations(value []int64) DepthwiseConv2dNativeBackpropFilterAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -45846,7 +45844,7 @@ func Conv2DBackpropFilterDataFormat(value string) Conv2DBackpropFilterAttr {
|
||||
// element on that dimension. The dimension order is determined by the value of
|
||||
// `data_format`, see above for details. Dilations in the batch and depth
|
||||
// dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func Conv2DBackpropFilterDilations(value []int64) Conv2DBackpropFilterAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -46838,7 +46836,7 @@ func CreateJob(scope *Scope, dataset_id tf.Output, address tf.Output, protocol t
|
||||
type Conv3DBackpropInputAttr func(optionalAttr)
|
||||
|
||||
// Conv3DBackpropInputDilations sets the optional dilations attribute to value.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1 i:1}
|
||||
func Conv3DBackpropInputDilations(value []int64) Conv3DBackpropInputAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -46909,7 +46907,7 @@ func DepthwiseConv2dNativeDataFormat(value string) DepthwiseConv2dNativeAttr {
|
||||
// element on that dimension. The dimension order is determined by the value of
|
||||
// `data_format`, see above for details. Dilations in the batch and depth
|
||||
// dimensions must be 1.
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
// If not specified, defaults to {i:1 i:1 i:1 i:1}
|
||||
func DepthwiseConv2dNativeDilations(value []int64) DepthwiseConv2dNativeAttr {
|
||||
return func(m optionalAttr) {
|
||||
m["dilations"] = value
|
||||
@ -47099,7 +47097,7 @@ func ResourceApplyAdagradV2UpdateSlots(value bool) ResourceApplyAdagradV2Attr {
|
||||
// Update '*var' according to the adagrad scheme.
|
||||
//
|
||||
// accum += grad * grad
|
||||
// var -= lr * grad * (1 / sqrt(accum))
|
||||
// var -= lr * grad * (1 / (sqrt(accum) + epsilon))
|
||||
//
|
||||
// Arguments:
|
||||
// var_: Should be from a Variable().
|
||||
|
Loading…
Reference in New Issue
Block a user