Update generated Python Op docs.
Change: 147423074
This commit is contained in:
parent
78c491caaf
commit
74d516c6aa
@ -7,10 +7,7 @@ Note: Functions taking `Tensor` arguments can also take anything accepted by
|
||||
|
||||
[TOC]
|
||||
|
||||
## Control Flow Operations
|
||||
|
||||
TensorFlow provides several operations and classes that you can use to control
|
||||
the execution of operations and add conditional dependencies to your graph.
|
||||
Control Flow Operations. See the @{python/control_flow_ops} guide.
|
||||
|
||||
- - -
|
||||
|
||||
@ -390,12 +387,6 @@ Example using shape_invariants:
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Logical Operators
|
||||
|
||||
TensorFlow provides several operations that you can use to add logical operators
|
||||
to your graph.
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.logical_and(x, y, name=None)` {#logical_and}
|
||||
@ -462,12 +453,6 @@ Returns the truth value of x OR y element-wise.
|
||||
x ^ y = (x | y) & ~(x & y).
|
||||
|
||||
|
||||
|
||||
## Comparison Operators
|
||||
|
||||
TensorFlow provides several operations that you can use to add comparison
|
||||
operators to your graph.
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.equal(x, y, name=None)` {#equal}
|
||||
@ -644,12 +629,6 @@ has the same shape as `x` and `y`, then it chooses which element to copy from
|
||||
* <b>`ValueError`</b>: When exactly one of `x` or `y` is non-None.
|
||||
|
||||
|
||||
|
||||
## Debugging Operations
|
||||
|
||||
TensorFlow provides several operations that you can use to validate values and
|
||||
debug your graph.
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.is_finite(x, name=None)` {#is_finite}
|
||||
|
@ -7,10 +7,7 @@ Note: Functions taking `Tensor` arguments can also take anything accepted by
|
||||
|
||||
[TOC]
|
||||
|
||||
## Script Language Operators.
|
||||
|
||||
TensorFlow provides allows you to wrap python/numpy functions as
|
||||
TensorFlow operators.
|
||||
Script Language Operators. See the @{python/script_ops} guide.
|
||||
|
||||
- - -
|
||||
|
||||
|
@ -7,10 +7,7 @@ Note: Functions taking `Tensor` arguments can also take anything accepted by
|
||||
|
||||
[TOC]
|
||||
|
||||
## Tensor Handle Operations.
|
||||
|
||||
TensorFlow provides several operators that allows the user to keep tensors
|
||||
"in-place" across run calls.
|
||||
Tensor Handle Operations. See the @{python/session_ops} guide.
|
||||
|
||||
- - -
|
||||
|
||||
|
@ -7,12 +7,7 @@ Note: Functions taking `Tensor` arguments can also take anything accepted by
|
||||
|
||||
[TOC]
|
||||
|
||||
## Sparse Tensor Representation
|
||||
|
||||
TensorFlow supports a `SparseTensor` representation for data that is sparse
|
||||
in multiple dimensions. Contrast this representation with `IndexedSlices`,
|
||||
which is efficient for representing tensors that are sparse in their first
|
||||
dimension, and dense along all other dimensions.
|
||||
Sparse Tensor Representation. See the @{python/sparse_ops} guide.
|
||||
|
||||
- - -
|
||||
|
||||
@ -322,9 +317,6 @@ Alias for field number 1
|
||||
|
||||
|
||||
|
||||
|
||||
## Conversion
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.sparse_to_dense(sparse_indices, output_shape, sparse_values, default_value=0, validate_indices=True, name=None)` {#sparse_to_dense}
|
||||
@ -575,9 +567,6 @@ In this case the resulting `SparseTensor` has the following properties:
|
||||
* <b>`ValueError`</b>: If `sp_ids` and `vocab_size` are lists of different lengths.
|
||||
|
||||
|
||||
|
||||
## Manipulation
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.sparse_concat(axis, sp_inputs, name=None, expand_nonconcat_dim=False, concat_dim=None)` {#sparse_concat}
|
||||
@ -1026,8 +1015,6 @@ then the output will be a `SparseTensor` of shape `[5, 4]` and
|
||||
* <b>`TypeError`</b>: If `sp_input` is not a `SparseTensor`.
|
||||
|
||||
|
||||
|
||||
## Reduction
|
||||
- - -
|
||||
|
||||
### `tf.sparse_reduce_sum(sp_input, axis=None, keep_dims=False, reduction_axes=None)` {#sparse_reduce_sum}
|
||||
@ -1107,8 +1094,6 @@ which are interpreted according to the indexing rules in Python.
|
||||
The reduced SparseTensor.
|
||||
|
||||
|
||||
|
||||
## Math Operations
|
||||
- - -
|
||||
|
||||
### `tf.sparse_add(a, b, thresh=0)` {#sparse_add}
|
||||
|
@ -7,7 +7,7 @@ Note: Functions taking `Tensor` arguments can also take anything accepted by
|
||||
|
||||
[TOC]
|
||||
|
||||
## Variables
|
||||
Variables. See the @{python/state_ops} guide.
|
||||
|
||||
- - -
|
||||
|
||||
@ -1170,12 +1170,6 @@ is on a different device it will get a copy of the variable.
|
||||
|
||||
|
||||
|
||||
|
||||
## Variable helper functions
|
||||
|
||||
TensorFlow provides a set of functions to help manage the set of variables
|
||||
collected in the graph.
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.global_variables()` {#global_variables}
|
||||
@ -1261,7 +1255,6 @@ This convenience function returns the contents of that collection.
|
||||
A list of Variable objects.
|
||||
|
||||
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.global_variables_initializer()` {#global_variables_initializer}
|
||||
@ -1381,7 +1374,6 @@ logged by the C++ runtime. This is expected.
|
||||
An Op, or None if there are no variables.
|
||||
|
||||
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.assign(ref, value, validate_shape=None, use_locking=None, name=None)` {#assign}
|
||||
@ -1471,9 +1463,6 @@ This makes it easier to chain operations that need to use the reset value.
|
||||
to use the new value after the variable has been updated.
|
||||
|
||||
|
||||
|
||||
## Saving and Restoring Variables
|
||||
|
||||
- - -
|
||||
|
||||
### `class tf.train.Saver` {#Saver}
|
||||
@ -1851,7 +1840,6 @@ Converts this `Saver` to a `SaverDef` protocol buffer.
|
||||
|
||||
|
||||
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.train.latest_checkpoint(checkpoint_dir, latest_filename=None)` {#latest_checkpoint}
|
||||
@ -1871,7 +1859,6 @@ Finds the filename of latest saved checkpoint file.
|
||||
The full path to the latest checkpoint or `None` if no checkpoint was found.
|
||||
|
||||
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.train.get_checkpoint_state(checkpoint_dir, latest_filename=None)` {#get_checkpoint_state}
|
||||
@ -1926,12 +1913,6 @@ proto.
|
||||
* <b>`RuntimeError`</b>: If the save paths conflict.
|
||||
|
||||
|
||||
|
||||
## Sharing Variables
|
||||
|
||||
TensorFlow provides several classes and operations that you can use to
|
||||
create variables contingent on certain conditions.
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.get_variable(name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partitioner=None, validate_shape=True, use_resource=None, custom_getter=None)` {#get_variable}
|
||||
@ -2506,7 +2487,6 @@ reduce the likelihood of collisions with kwargs.
|
||||
* <b>`ValueError`</b>: if the name is None.
|
||||
|
||||
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.no_regularizer(_)` {#no_regularizer}
|
||||
@ -2514,7 +2494,6 @@ reduce the likelihood of collisions with kwargs.
|
||||
Use this function to prevent regularization of variables.
|
||||
|
||||
|
||||
|
||||
- - -
|
||||
|
||||
### `class tf.constant_initializer` {#constant_initializer}
|
||||
@ -2820,9 +2799,6 @@ Args:
|
||||
|
||||
|
||||
|
||||
|
||||
## Variable Partitioners for Sharding
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.fixed_size_partitioner(num_shards, axis=0)` {#fixed_size_partitioner}
|
||||
@ -2908,21 +2884,6 @@ variable. The maximum number of such partitions (upper bound) is given by
|
||||
`variable_scope`, `get_variable`, and `get_partitioned_variable_list`.
|
||||
|
||||
|
||||
|
||||
## Sparse Variable Updates
|
||||
|
||||
The sparse update ops modify a subset of the entries in a dense `Variable`,
|
||||
either overwriting the entries or adding / subtracting a delta. These are
|
||||
useful for training embedding models and similar lookup-based networks, since
|
||||
only a small subset of embedding vectors change in any given step.
|
||||
|
||||
Since a sparse update of a large tensor may be generated automatically during
|
||||
gradient computation (as in the gradient of
|
||||
[`tf.gather`](../../api_docs/python/array_ops.md#gather)),
|
||||
an [`IndexedSlices`](#IndexedSlices) class is provided that encapsulates a set
|
||||
of sparse indices and values. `IndexedSlices` objects are detected and handled
|
||||
automatically by the optimizers in most cases.
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.scatter_update(ref, indices, updates, use_locking=None, name=None)` {#scatter_update}
|
||||
@ -3499,9 +3460,6 @@ A `Tensor` containing the values of the slices.
|
||||
|
||||
|
||||
|
||||
|
||||
### Read-only Lookup Tables
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.initialize_all_tables(*args, **kwargs)` {#initialize_all_tables}
|
||||
@ -3540,10 +3498,6 @@ Returns an Op that initializes all tables of the default graph.
|
||||
not tables the returned Op is a NoOp.
|
||||
|
||||
|
||||
|
||||
|
||||
## Exporting and Importing Meta Graphs
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.train.export_meta_graph(filename=None, meta_info_def=None, graph_def=None, saver_def=None, collection_list=None, as_text=False, graph=None, export_scope=None, clear_devices=False, **kwargs)` {#export_meta_graph}
|
||||
@ -3657,9 +3611,6 @@ device assignments have not changed.
|
||||
(i.e., there are no variables to restore).
|
||||
|
||||
|
||||
|
||||
# Deprecated functions (removed after 2017-03-02). Please don't use them.
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.all_variables(*args, **kwargs)` {#all_variables}
|
||||
|
Loading…
x
Reference in New Issue
Block a user