Addressing review comments
This commit is contained in:
parent
e882f17498
commit
736eba374e
@ -15,6 +15,7 @@ limitations under the License.
|
||||
|
||||
#if GOOGLE_CUDA
|
||||
#define EIGEN_USE_GPU
|
||||
#include <limits>
|
||||
#include "absl/strings/str_cat.h"
|
||||
#include "tensorflow/core/framework/numeric_types.h"
|
||||
#include "tensorflow/core/framework/op_kernel.h"
|
||||
@ -80,19 +81,8 @@ __device__ EIGEN_STRONG_INLINE void Swap(T& a, T& b) {
|
||||
b = c;
|
||||
}
|
||||
|
||||
template <bool T>
|
||||
__device__ float legacy_offset(float);
|
||||
template <>
|
||||
__device__ EIGEN_STRONG_INLINE float legacy_offset<true>(float a) {
|
||||
return a + 1.0;
|
||||
}
|
||||
template <>
|
||||
__device__ EIGEN_STRONG_INLINE float legacy_offset<false>(float a) {
|
||||
return a;
|
||||
}
|
||||
|
||||
// Check whether two boxes have an IoU greater than threshold.
|
||||
template <typename T, bool L>
|
||||
template <typename T>
|
||||
__device__ EIGEN_STRONG_INLINE bool OverThreshold(const Box* a, const Box* b,
|
||||
const float a_area,
|
||||
const T iou_threshold) {
|
||||
@ -104,8 +94,8 @@ __device__ EIGEN_STRONG_INLINE bool OverThreshold(const Box* a, const Box* b,
|
||||
const float yy2 = fminf(a->y2, b->y2);
|
||||
|
||||
// fdimf computes the positive difference between xx2+1 and xx1.
|
||||
const float w = fdimf(legacy_offset<L>(xx2), xx1);
|
||||
const float h = fdimf(legacy_offset<L>(yy2), yy1);
|
||||
const float w = fdimf(xx2, xx1);
|
||||
const float h = fdimf(yy2, yy1);
|
||||
const float intersection = w * h;
|
||||
|
||||
// Testing for aa/bb > t
|
||||
@ -130,10 +120,10 @@ __device__ EIGEN_STRONG_INLINE void Flipped<true>(Box& box) {
|
||||
}
|
||||
template <typename T>
|
||||
__device__ EIGEN_STRONG_INLINE bool CheckBit(T* bit_mask, int bit) {
|
||||
constexpr int SHIFTLEN = NumBits(8 * sizeof(T)) - 1;
|
||||
constexpr int REMAINDER_MASK = 8 * sizeof(T) - 1;
|
||||
int bin = bit >> SHIFTLEN;
|
||||
return (bit_mask[bin] >> (bit & REMAINDER_MASK)) & 1;
|
||||
constexpr int kShiftLen = NumBits(8 * sizeof(T)) - 1;
|
||||
constexpr int kRemainderMask = 8 * sizeof(T) - 1;
|
||||
int bin = bit >> kShiftLen;
|
||||
return (bit_mask[bin] >> (bit & kRemainderMask)) & 1;
|
||||
}
|
||||
|
||||
// Produce a global bitmask (result_mask) of selected boxes from bitmask
|
||||
@ -180,11 +170,11 @@ __global__ void NMSReduce(const int* bitmask, const int bit_mask_len,
|
||||
// If flip_box is true boxes may have x1>x2 and or y1>y2. If so change the
|
||||
// coordinates such that for all boxes x1<x2 and y1<y2. Else boxes should have
|
||||
// x1<x2 and y1<y2.
|
||||
template <bool flip_box, bool legacy_mode>
|
||||
template <bool flip_box>
|
||||
__launch_bounds__(kNmsBlockDim* kNmsBlockDim, 4) __global__
|
||||
void NMSKernel(const Box* d_desc_sorted_boxes,
|
||||
const int num_boxes, const float iou_threshold,
|
||||
const int bit_mask_len, int* d_delete_mask) {
|
||||
void NMSKernel(const Box* d_desc_sorted_boxes, const int num_boxes,
|
||||
const float iou_threshold, const int bit_mask_len,
|
||||
int* d_delete_mask) {
|
||||
// Storing boxes used by this CUDA block in the shared memory.
|
||||
__shared__ Box shared_i_boxes[kNmsBlockDim];
|
||||
// Same thing with areas
|
||||
@ -224,8 +214,8 @@ __launch_bounds__(kNmsBlockDim* kNmsBlockDim, 4) __global__
|
||||
Box j_box = d_desc_sorted_boxes[j];
|
||||
const Box i_box = shared_i_boxes[threadIdx.x];
|
||||
Flipped<flip_box>(j_box);
|
||||
if (OverThreshold<float, legacy_mode>(
|
||||
&i_box, &j_box, shared_i_areas[threadIdx.x], iou_threshold)) {
|
||||
if (OverThreshold<float>(&i_box, &j_box, shared_i_areas[threadIdx.x],
|
||||
iou_threshold)) {
|
||||
// we have score[j] <= score[i].
|
||||
above_threshold |= (1U << ib);
|
||||
}
|
||||
@ -247,8 +237,7 @@ __device__ EIGEN_STRONG_INLINE void SelectHelper(const Index i_selected,
|
||||
template <typename Index, typename T, typename... Args>
|
||||
__device__ EIGEN_STRONG_INLINE void SelectHelper(const Index i_selected,
|
||||
const Index i_original,
|
||||
const T* original,
|
||||
T* selected,
|
||||
const T* original, T* selected,
|
||||
Args... args) {
|
||||
selected[i_selected] = original[i_original];
|
||||
SelectHelper(i_selected, i_original, args...);
|
||||
@ -261,18 +250,15 @@ __device__ EIGEN_STRONG_INLINE void SelectHelper(const Index i_selected,
|
||||
// IndexMultiSelect(num_elements, indices, original1 ,selected1, original2,
|
||||
// selected2).
|
||||
template <typename Index, typename T, typename... Args>
|
||||
__global__ void IndexMultiSelect(const int num_elements,
|
||||
const Index* indices,
|
||||
const T* original,
|
||||
T* selected, Args... args) {
|
||||
__global__ void IndexMultiSelect(const int num_elements, const Index* indices,
|
||||
const T* original, T* selected, Args... args) {
|
||||
for (const int idx : CudaGridRangeX(num_elements)) {
|
||||
SelectHelper(idx, indices[idx], original, selected, args...);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void Iota(const int num_elements, const T offset,
|
||||
T* to_fill) {
|
||||
__global__ void Iota(const int num_elements, const T offset, T* to_fill) {
|
||||
for (int idx : CudaGridRangeX(num_elements)) {
|
||||
to_fill[idx] = static_cast<T>(idx) + offset;
|
||||
}
|
||||
@ -280,8 +266,7 @@ __global__ void Iota(const int num_elements, const T offset,
|
||||
|
||||
Status NmsGpu(const float* d_sorted_boxes_float_ptr, const int num_boxes,
|
||||
const float iou_threshold, int* d_selected_indices, int* h_nkeep,
|
||||
OpKernelContext* context, const int max_boxes, bool flip_boxes,
|
||||
bool legacy_mode) {
|
||||
OpKernelContext* context, const int max_boxes, bool flip_boxes) {
|
||||
// Making sure we respect the __align(16)__
|
||||
// we promised to the compiler.
|
||||
auto iptr = reinterpret_cast<std::uintptr_t>(d_sorted_boxes_float_ptr);
|
||||
@ -309,9 +294,8 @@ Status NmsGpu(const float* d_sorted_boxes_float_ptr, const int num_boxes,
|
||||
alloc_attr.set_gpu_compatible(true);
|
||||
// Size of this buffer can be reduced to kNmsChunkSize*bit_mask_len*2 and
|
||||
// using it as a ring buffer. However savings should be a few MB .
|
||||
TF_RETURN_IF_ERROR(context->allocate_temp(DataType::DT_INT32,
|
||||
TensorShape({1}),
|
||||
&h_num_selected, alloc_attr));
|
||||
TF_RETURN_IF_ERROR(context->allocate_temp(
|
||||
DataType::DT_INT32, TensorShape({1}), &h_num_selected, alloc_attr));
|
||||
|
||||
int* d_delete_mask = d_nms_mask.flat<int>().data();
|
||||
int* h_selected_count = h_num_selected.flat<int>().data();
|
||||
@ -327,29 +311,13 @@ Status NmsGpu(const float* d_sorted_boxes_float_ptr, const int num_boxes,
|
||||
thread_block.y = kNmsBlockDim;
|
||||
thread_block.z = 1;
|
||||
if (flip_boxes) {
|
||||
if (!legacy_mode) {
|
||||
TF_CHECK_OK(GpuLaunchKernel(NMSKernel<true, false>, block_dim,
|
||||
thread_block, 0, device.stream(),
|
||||
d_sorted_boxes, num_boxes, iou_threshold,
|
||||
bit_mask_len, d_delete_mask));
|
||||
} else {
|
||||
TF_CHECK_OK(GpuLaunchKernel(NMSKernel<true, true>, block_dim,
|
||||
thread_block, 0, device.stream(),
|
||||
d_sorted_boxes, num_boxes, iou_threshold,
|
||||
bit_mask_len, d_delete_mask));
|
||||
}
|
||||
TF_CHECK_OK(GpuLaunchKernel(NMSKernel<true>, block_dim, thread_block, 0,
|
||||
device.stream(), d_sorted_boxes, num_boxes,
|
||||
iou_threshold, bit_mask_len, d_delete_mask));
|
||||
} else {
|
||||
if (!legacy_mode) {
|
||||
TF_CHECK_OK(GpuLaunchKernel(NMSKernel<false, false>, block_dim,
|
||||
thread_block, 0, device.stream(),
|
||||
d_sorted_boxes, num_boxes, iou_threshold,
|
||||
bit_mask_len, d_delete_mask));
|
||||
} else {
|
||||
TF_CHECK_OK(GpuLaunchKernel(NMSKernel<false, true>, block_dim,
|
||||
thread_block, 0, device.stream(),
|
||||
d_sorted_boxes, num_boxes, iou_threshold,
|
||||
bit_mask_len, d_delete_mask));
|
||||
}
|
||||
TF_CHECK_OK(GpuLaunchKernel(NMSKernel<false>, block_dim, thread_block, 0,
|
||||
device.stream(), d_sorted_boxes, num_boxes,
|
||||
iou_threshold, bit_mask_len, d_delete_mask));
|
||||
}
|
||||
TF_RETURN_IF_CUDA_ERROR(cudaGetLastError());
|
||||
// Overlapping CPU computes and D2H memcpy
|
||||
@ -408,152 +376,6 @@ Status NmsGpu(const float* d_sorted_boxes_float_ptr, const int num_boxes,
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
class NonMaxSuppressionV2GPUOp : public OpKernel {
|
||||
public:
|
||||
explicit NonMaxSuppressionV2GPUOp(OpKernelConstruction* context)
|
||||
: OpKernel(context) {}
|
||||
|
||||
void Compute(OpKernelContext* context) override {
|
||||
// boxes: [num_boxes, 4]
|
||||
const Tensor& boxes = context->input(0);
|
||||
// scores: [num_boxes]
|
||||
const Tensor& scores = context->input(1);
|
||||
// max_output_size: scalar
|
||||
const Tensor& max_output_size = context->input(2);
|
||||
OP_REQUIRES(
|
||||
context, TensorShapeUtils::IsScalar(max_output_size.shape()),
|
||||
errors::InvalidArgument("max_output_size must be 0-D, got shape ",
|
||||
max_output_size.shape().DebugString()));
|
||||
// iou_threshold: scalar
|
||||
const Tensor& iou_threshold = context->input(3);
|
||||
OP_REQUIRES(context, TensorShapeUtils::IsScalar(iou_threshold.shape()),
|
||||
errors::InvalidArgument("iou_threshold must be 0-D, got shape ",
|
||||
iou_threshold.shape().DebugString()));
|
||||
const float iou_threshold_val = iou_threshold.scalar<float>()();
|
||||
|
||||
OP_REQUIRES(context, iou_threshold_val >= 0 && iou_threshold_val <= 1,
|
||||
errors::InvalidArgument("iou_threshold must be in [0, 1]"));
|
||||
OP_REQUIRES(context, boxes.dims() == 2,
|
||||
errors::InvalidArgument("boxes must be a rank 2 tensor!"));
|
||||
int num_boxes = boxes.dim_size(0);
|
||||
OP_REQUIRES(context, boxes.dim_size(1) == 4,
|
||||
errors::InvalidArgument("boxes must be Nx4"));
|
||||
OP_REQUIRES(context, scores.dims() == 1,
|
||||
errors::InvalidArgument("scores must be a vector!"));
|
||||
OP_REQUIRES(
|
||||
context, scores.dim_size(0) == num_boxes,
|
||||
errors::InvalidArgument(
|
||||
"scores has incompatible shape")); // message must be exactly this
|
||||
// otherwise tests fail!
|
||||
if (num_boxes == 0) {
|
||||
Tensor* output_indices = nullptr;
|
||||
OP_REQUIRES_OK(context, context->allocate_output(0, TensorShape({0}),
|
||||
&output_indices));
|
||||
return;
|
||||
}
|
||||
const int output_size = max_output_size.scalar<int>()();
|
||||
size_t cub_sort_temp_storage_bytes = 0;
|
||||
auto cuda_stream = GetGpuStream(context);
|
||||
auto device = context->eigen_gpu_device();
|
||||
// Calling cub with nullptrs as inputs will make it return
|
||||
// workspace size needed for the operation instead of doing the operation.
|
||||
// In this specific instance, cub_sort_temp_storage_bytes will contain the
|
||||
// necessary workspace size for sorting after the call.
|
||||
cudaError_t cuda_ret = cub::DeviceRadixSort::SortPairsDescending(
|
||||
nullptr, cub_sort_temp_storage_bytes,
|
||||
static_cast<float*>(nullptr), // scores
|
||||
static_cast<float*>(nullptr), // sorted scores
|
||||
static_cast<int*>(nullptr), // input indices
|
||||
static_cast<int*>(nullptr), // sorted indices
|
||||
num_boxes, // num items
|
||||
0, 8 * sizeof(float), // sort all bits
|
||||
cuda_stream);
|
||||
TF_OP_REQUIRES_CUDA_SUCCESS(context, cuda_ret);
|
||||
Tensor d_cub_sort_buffer;
|
||||
OP_REQUIRES_OK(context,
|
||||
context->allocate_temp(
|
||||
DataType::DT_INT8,
|
||||
TensorShape({(int64)cub_sort_temp_storage_bytes}),
|
||||
&d_cub_sort_buffer));
|
||||
Tensor d_indices;
|
||||
OP_REQUIRES_OK(
|
||||
context, context->allocate_temp(DataType::DT_INT32,
|
||||
TensorShape({num_boxes}), &d_indices));
|
||||
Tensor d_sorted_indices;
|
||||
OP_REQUIRES_OK(context, context->allocate_temp(DataType::DT_INT32,
|
||||
TensorShape({num_boxes}),
|
||||
&d_sorted_indices));
|
||||
Tensor d_selected_indices;
|
||||
OP_REQUIRES_OK(context, context->allocate_temp(DataType::DT_INT32,
|
||||
TensorShape({num_boxes}),
|
||||
&d_selected_indices));
|
||||
Tensor d_sorted_scores;
|
||||
OP_REQUIRES_OK(context, context->allocate_temp(DataType::DT_FLOAT,
|
||||
TensorShape({num_boxes}),
|
||||
&d_sorted_scores));
|
||||
Tensor d_sorted_boxes;
|
||||
OP_REQUIRES_OK(context, context->allocate_temp(DataType::DT_FLOAT,
|
||||
TensorShape({num_boxes, 4}),
|
||||
&d_sorted_boxes));
|
||||
|
||||
// this will return sorted scores and their indices
|
||||
auto config = GetGpuLaunchConfig(num_boxes, device);
|
||||
// initialize box and score indices
|
||||
TF_CHECK_OK(GpuLaunchKernel(Iota<int>, config.block_count,
|
||||
config.thread_per_block, 0, device.stream(),
|
||||
config.virtual_thread_count, 0,
|
||||
d_indices.flat<int>().data()));
|
||||
TF_OP_REQUIRES_CUDA_SUCCESS(context, cudaGetLastError());
|
||||
cuda_ret = cub::DeviceRadixSort::SortPairsDescending(
|
||||
d_cub_sort_buffer.flat<int8>().data(), cub_sort_temp_storage_bytes,
|
||||
scores.flat<float>().data(), d_sorted_scores.flat<float>().data(),
|
||||
d_indices.flat<int>().data(), d_sorted_indices.flat<int>().data(),
|
||||
num_boxes, 0,
|
||||
8 * sizeof(float), // sort all bits
|
||||
cuda_stream);
|
||||
TF_OP_REQUIRES_CUDA_SUCCESS(context, cuda_ret);
|
||||
|
||||
// get pointers for easy access
|
||||
const float4* original_boxes =
|
||||
reinterpret_cast<const float4*>(boxes.flat<float>().data());
|
||||
float4* sorted_boxes =
|
||||
reinterpret_cast<float4*>(d_sorted_boxes.flat<float>().data());
|
||||
const int* sorted_indices = d_sorted_indices.flat<int>().data();
|
||||
// sort boxes using indices
|
||||
TF_CHECK_OK(GpuLaunchKernel(IndexMultiSelect<int, float4>,
|
||||
config.block_count, config.thread_per_block, 0,
|
||||
device.stream(), config.virtual_thread_count,
|
||||
sorted_indices, original_boxes, sorted_boxes));
|
||||
|
||||
int num_to_keep = 0;
|
||||
// There is no guarantee that boxes are given in the for x1<x2 and/or y1<y2,
|
||||
// flip boxes if necessary!
|
||||
const bool flip_boxes = true;
|
||||
auto status = NmsGpu(
|
||||
d_sorted_boxes.flat<float>().data(), num_boxes, iou_threshold_val,
|
||||
d_selected_indices.flat<int>().data(), &num_to_keep, context,
|
||||
output_size, flip_boxes, /*legacy_mode*/ false);
|
||||
TF_OP_REQUIRES_CUDA_SUCCESS(context, cudaGetLastError());
|
||||
if (!status.ok()) {
|
||||
context->SetStatus(status);
|
||||
return;
|
||||
}
|
||||
Tensor* output_indices = nullptr;
|
||||
int num_outputs = std::min(num_to_keep, output_size); // no padding!
|
||||
OP_REQUIRES_OK(context,
|
||||
context->allocate_output(0, TensorShape({num_outputs}),
|
||||
&output_indices));
|
||||
if (num_outputs == 0) return;
|
||||
config = GetGpuLaunchConfig(num_outputs, device);
|
||||
TF_CHECK_OK(GpuLaunchKernel(
|
||||
IndexMultiSelect<int, int>, config.block_count, config.thread_per_block,
|
||||
0, device.stream(), config.virtual_thread_count,
|
||||
d_selected_indices.flat<int>().data(), sorted_indices,
|
||||
(*output_indices).flat<int>().data()));
|
||||
TF_OP_REQUIRES_CUDA_SUCCESS(context, cudaGetLastError());
|
||||
}
|
||||
};
|
||||
|
||||
struct GreaterThanCubOp {
|
||||
float threshold_;
|
||||
__host__ __device__ __forceinline__ GreaterThanCubOp(float threshold)
|
||||
@ -597,6 +419,180 @@ Status CountIf(OpKernelContext* context, const float* dev_array, const Op& op,
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status DoNMS(OpKernelContext* context, const Tensor& boxes,
|
||||
const Tensor& scores, const int64_t max_output_size,
|
||||
const float iou_threshold_val, const float score_threshold) {
|
||||
const int output_size = max_output_size;
|
||||
int num_boxes = boxes.dim_size(0);
|
||||
size_t cub_sort_temp_storage_bytes = 0;
|
||||
auto cuda_stream = GetGpuStream(context);
|
||||
auto device = context->eigen_gpu_device();
|
||||
// Calling cub with nullptrs as inputs will make it return
|
||||
// workspace size needed for the operation instead of doing the operation.
|
||||
// In this specific instance, cub_sort_temp_storage_bytes will contain the
|
||||
// necessary workspace size for sorting after the call.
|
||||
if (num_boxes == 0) {
|
||||
Tensor* output_indices = nullptr;
|
||||
TF_RETURN_IF_ERROR(
|
||||
context->allocate_output(0, TensorShape({0}), &output_indices));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
cudaError_t cuda_ret = cub::DeviceRadixSort::SortPairsDescending(
|
||||
nullptr, cub_sort_temp_storage_bytes,
|
||||
static_cast<float*>(nullptr), // scores
|
||||
static_cast<float*>(nullptr), // sorted scores
|
||||
static_cast<int*>(nullptr), // input indices
|
||||
static_cast<int*>(nullptr), // sorted indices
|
||||
num_boxes, // num items
|
||||
0, 8 * sizeof(float), // sort all bits
|
||||
cuda_stream);
|
||||
TF_RETURN_IF_CUDA_ERROR(cuda_ret);
|
||||
Tensor d_cub_sort_buffer;
|
||||
TF_RETURN_IF_ERROR(context->allocate_temp(
|
||||
DataType::DT_INT8, TensorShape({(int64)cub_sort_temp_storage_bytes}),
|
||||
&d_cub_sort_buffer));
|
||||
Tensor d_indices;
|
||||
TF_RETURN_IF_ERROR(context->allocate_temp(
|
||||
DataType::DT_INT32, TensorShape({num_boxes}), &d_indices));
|
||||
Tensor d_sorted_indices;
|
||||
TF_RETURN_IF_ERROR(context->allocate_temp(
|
||||
DataType::DT_INT32, TensorShape({num_boxes}), &d_sorted_indices));
|
||||
Tensor d_selected_indices;
|
||||
TF_RETURN_IF_ERROR(context->allocate_temp(
|
||||
DataType::DT_INT32, TensorShape({num_boxes}), &d_selected_indices));
|
||||
Tensor d_sorted_scores;
|
||||
TF_RETURN_IF_ERROR(context->allocate_temp(
|
||||
DataType::DT_FLOAT, TensorShape({num_boxes}), &d_sorted_scores));
|
||||
Tensor d_sorted_boxes;
|
||||
TF_RETURN_IF_ERROR(context->allocate_temp(
|
||||
DataType::DT_FLOAT, TensorShape({num_boxes, 4}), &d_sorted_boxes));
|
||||
|
||||
// this will return sorted scores and their indices
|
||||
auto config = GetGpuLaunchConfig(num_boxes, device);
|
||||
// initialize box and score indices
|
||||
TF_CHECK_OK(GpuLaunchKernel(Iota<int>, config.block_count,
|
||||
config.thread_per_block, 0, device.stream(),
|
||||
config.virtual_thread_count, 0,
|
||||
d_indices.flat<int>().data()));
|
||||
TF_RETURN_IF_CUDA_ERROR(cudaGetLastError());
|
||||
cuda_ret = cub::DeviceRadixSort::SortPairsDescending(
|
||||
d_cub_sort_buffer.flat<int8>().data(), cub_sort_temp_storage_bytes,
|
||||
scores.flat<float>().data(), d_sorted_scores.flat<float>().data(),
|
||||
d_indices.flat<int>().data(), d_sorted_indices.flat<int>().data(),
|
||||
num_boxes, 0,
|
||||
8 * sizeof(float), // sort all bits
|
||||
cuda_stream);
|
||||
TF_RETURN_IF_CUDA_ERROR(cuda_ret);
|
||||
|
||||
// get pointers for easy access
|
||||
const float4* original_boxes =
|
||||
reinterpret_cast<const float4*>(boxes.flat<float>().data());
|
||||
float4* sorted_boxes =
|
||||
reinterpret_cast<float4*>(d_sorted_boxes.flat<float>().data());
|
||||
const int* sorted_indices = d_sorted_indices.flat<int>().data();
|
||||
// sort boxes using indices
|
||||
TF_CHECK_OK(GpuLaunchKernel(IndexMultiSelect<int, float4>, config.block_count,
|
||||
config.thread_per_block, 0, device.stream(),
|
||||
config.virtual_thread_count, sorted_indices,
|
||||
original_boxes, sorted_boxes));
|
||||
int limited_num_boxes = num_boxes;
|
||||
// filter boxes by scores if nms v3
|
||||
if (score_threshold > std::numeric_limits<float>::min()) {
|
||||
GreaterThanCubOp score_limit(score_threshold);
|
||||
TF_RETURN_IF_ERROR(CountIf(context, d_sorted_scores.flat<float>().data(),
|
||||
score_limit, num_boxes, &limited_num_boxes));
|
||||
if (limited_num_boxes == 0) {
|
||||
Tensor* output_indices = nullptr;
|
||||
VLOG(1) << "Number of boxes above score threshold " << score_threshold
|
||||
<< " is 0";
|
||||
TF_RETURN_IF_ERROR(
|
||||
context->allocate_output(0, TensorShape({0}), &output_indices));
|
||||
return Status::OK();
|
||||
} else {
|
||||
VLOG(2) << "Number of boxes above threshold=" << score_threshold
|
||||
<< " is " << limited_num_boxes;
|
||||
}
|
||||
}
|
||||
int num_to_keep = 0;
|
||||
// There is no guarantee that boxes are given in the for x1<x2 and/or y1<y2,
|
||||
// flip boxes if necessary!
|
||||
const bool flip_boxes = true;
|
||||
auto status = NmsGpu(d_sorted_boxes.flat<float>().data(), limited_num_boxes,
|
||||
iou_threshold_val, d_selected_indices.flat<int>().data(),
|
||||
&num_to_keep, context, output_size, flip_boxes);
|
||||
TF_RETURN_IF_CUDA_ERROR(cudaGetLastError());
|
||||
if (!status.ok()) {
|
||||
context->SetStatus(status);
|
||||
return status;
|
||||
}
|
||||
Tensor* output_indices = nullptr;
|
||||
int num_outputs = std::min(num_to_keep, output_size); // no padding!
|
||||
TF_RETURN_IF_ERROR(
|
||||
context->allocate_output(0, TensorShape({num_outputs}), &output_indices));
|
||||
if (num_outputs == 0) return Status::OK();
|
||||
config = GetGpuLaunchConfig(num_outputs, device);
|
||||
TF_CHECK_OK(GpuLaunchKernel(
|
||||
IndexMultiSelect<int, int>, config.block_count, config.thread_per_block,
|
||||
0, device.stream(), config.virtual_thread_count,
|
||||
d_selected_indices.flat<int>().data(), sorted_indices,
|
||||
(*output_indices).flat<int>().data()));
|
||||
TF_RETURN_IF_CUDA_ERROR(cudaGetLastError());
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
class NonMaxSuppressionV2GPUOp : public OpKernel {
|
||||
public:
|
||||
explicit NonMaxSuppressionV2GPUOp(OpKernelConstruction* context)
|
||||
: OpKernel(context) {}
|
||||
|
||||
void Compute(OpKernelContext* context) override {
|
||||
// boxes: [num_boxes, 4]
|
||||
const Tensor& boxes = context->input(0);
|
||||
// scores: [num_boxes]
|
||||
const Tensor& scores = context->input(1);
|
||||
// max_output_size: scalar
|
||||
const Tensor& max_output_size = context->input(2);
|
||||
OP_REQUIRES(
|
||||
context, TensorShapeUtils::IsScalar(max_output_size.shape()),
|
||||
errors::InvalidArgument("max_output_size must be 0-D, got shape ",
|
||||
max_output_size.shape().DebugString()));
|
||||
// iou_threshold: scalar
|
||||
const Tensor& iou_threshold = context->input(3);
|
||||
OP_REQUIRES(context, TensorShapeUtils::IsScalar(iou_threshold.shape()),
|
||||
errors::InvalidArgument("iou_threshold must be 0-D, got shape ",
|
||||
iou_threshold.shape().DebugString()));
|
||||
const float iou_threshold_val = iou_threshold.scalar<float>()();
|
||||
|
||||
OP_REQUIRES(context, iou_threshold_val >= 0 && iou_threshold_val <= 1,
|
||||
errors::InvalidArgument("iou_threshold must be in [0, 1]"));
|
||||
OP_REQUIRES(context, boxes.dims() == 2,
|
||||
errors::InvalidArgument("boxes must be a rank 2 tensor!"));
|
||||
int num_boxes = boxes.dim_size(0);
|
||||
OP_REQUIRES(context, boxes.dim_size(1) == 4,
|
||||
errors::InvalidArgument("boxes must be Nx4"));
|
||||
OP_REQUIRES(context, scores.dims() == 1,
|
||||
errors::InvalidArgument("scores must be a vector!"));
|
||||
OP_REQUIRES(
|
||||
context, scores.dim_size(0) == num_boxes,
|
||||
errors::InvalidArgument(
|
||||
"scores has incompatible shape")); // message must be exactly this
|
||||
// otherwise tests fail!
|
||||
if (num_boxes == 0) {
|
||||
Tensor* output_indices = nullptr;
|
||||
OP_REQUIRES_OK(context,
|
||||
context->allocate_output(0, TensorShape({0}), &output_indices));
|
||||
return;
|
||||
}
|
||||
const int64_t output_size = max_output_size.scalar<int>()();
|
||||
OP_REQUIRES_OK(
|
||||
context,
|
||||
DoNMS(context, boxes, scores, output_size, iou_threshold_val,
|
||||
/*score_threshold is float min if score threshold is disabled*/
|
||||
std::numeric_limits<float>::min()));
|
||||
}
|
||||
};
|
||||
|
||||
class NonMaxSuppressionV3GPUOp : public OpKernel {
|
||||
public:
|
||||
explicit NonMaxSuppressionV3GPUOp(OpKernelConstruction* context)
|
||||
@ -648,131 +644,8 @@ class NonMaxSuppressionV3GPUOp : public OpKernel {
|
||||
return;
|
||||
}
|
||||
const int output_size = max_output_size.scalar<int>()();
|
||||
size_t cub_sort_temp_storage_bytes = 0;
|
||||
auto cuda_stream = tensorflow::GetGpuStream(context);
|
||||
auto device = context->eigen_gpu_device();
|
||||
// Calling cub with nullptrs as inputs will make it return
|
||||
// workspace size needed for the operation instead of doing the operation.
|
||||
// In this specific instance, cub_sort_temp_storage_bytes will contain the
|
||||
// necessary workspace size for sorting after the call.
|
||||
cudaError_t cuda_ret = cub::DeviceRadixSort::SortPairsDescending(
|
||||
nullptr, cub_sort_temp_storage_bytes,
|
||||
static_cast<float*>(nullptr), // scores
|
||||
static_cast<float*>(nullptr), // sorted scores
|
||||
static_cast<int*>(nullptr), // input indices
|
||||
static_cast<int*>(nullptr), // sorted indices
|
||||
num_boxes, // num items
|
||||
0, 8 * sizeof(float), // sort all bits
|
||||
cuda_stream);
|
||||
TF_OP_REQUIRES_CUDA_SUCCESS(context, cuda_ret);
|
||||
Tensor d_cub_sort_buffer;
|
||||
OP_REQUIRES_OK(context,
|
||||
context->allocate_temp(
|
||||
DataType::DT_INT8,
|
||||
TensorShape({(int64)cub_sort_temp_storage_bytes}),
|
||||
&d_cub_sort_buffer));
|
||||
Tensor d_indices;
|
||||
OP_REQUIRES_OK(
|
||||
context, context->allocate_temp(DataType::DT_INT32,
|
||||
TensorShape({num_boxes}), &d_indices));
|
||||
Tensor d_sorted_indices;
|
||||
OP_REQUIRES_OK(context, context->allocate_temp(DataType::DT_INT32,
|
||||
TensorShape({num_boxes}),
|
||||
&d_sorted_indices));
|
||||
Tensor d_selected_indices;
|
||||
OP_REQUIRES_OK(context, context->allocate_temp(DataType::DT_INT32,
|
||||
TensorShape({num_boxes}),
|
||||
&d_selected_indices));
|
||||
Tensor d_sorted_scores;
|
||||
OP_REQUIRES_OK(context, context->allocate_temp(DataType::DT_FLOAT,
|
||||
TensorShape({num_boxes}),
|
||||
&d_sorted_scores));
|
||||
Tensor d_sorted_boxes;
|
||||
OP_REQUIRES_OK(context, context->allocate_temp(DataType::DT_FLOAT,
|
||||
TensorShape({num_boxes, 4}),
|
||||
&d_sorted_boxes));
|
||||
|
||||
// this will return sorted scores and their indices
|
||||
auto config = GetGpuLaunchConfig(num_boxes, device);
|
||||
// initialize box and score indices
|
||||
TF_CHECK_OK(GpuLaunchKernel(Iota<int>, config.block_count,
|
||||
config.thread_per_block, 0, device.stream(),
|
||||
config.virtual_thread_count, 0,
|
||||
d_indices.flat<int>().data()));
|
||||
TF_OP_REQUIRES_CUDA_SUCCESS(context, cudaGetLastError());
|
||||
cuda_ret = cub::DeviceRadixSort::SortPairsDescending(
|
||||
d_cub_sort_buffer.flat<int8>().data(), cub_sort_temp_storage_bytes,
|
||||
scores.flat<float>().data(), d_sorted_scores.flat<float>().data(),
|
||||
d_indices.flat<int>().data(), d_sorted_indices.flat<int>().data(),
|
||||
num_boxes, 0,
|
||||
8 * sizeof(float), // sort all bits
|
||||
cuda_stream);
|
||||
TF_OP_REQUIRES_CUDA_SUCCESS(context, cuda_ret);
|
||||
// get pointers for easy access
|
||||
const float4* original_boxes =
|
||||
reinterpret_cast<const float4*>(boxes.flat<float>().data());
|
||||
float4* sorted_boxes =
|
||||
reinterpret_cast<float4*>(d_sorted_boxes.flat<float>().data());
|
||||
const int* sorted_indices = d_sorted_indices.flat<int>().data();
|
||||
// sort boxes using indices
|
||||
TF_CHECK_OK(GpuLaunchKernel(IndexMultiSelect<int, float4>,
|
||||
config.block_count, config.thread_per_block, 0,
|
||||
device.stream(), config.virtual_thread_count,
|
||||
sorted_indices, original_boxes, sorted_boxes));
|
||||
|
||||
// Unfortunately we had to sort scores to find the number of boxes which has
|
||||
// a threshold above score_threshold_val. It can be done before sorting but
|
||||
// that would require either implementing a custom sort or a generic random
|
||||
// access iterator for cub. For the time being we search for the location of
|
||||
// the score_threshold_val in the sorted array and limit num_boxes to its
|
||||
// index.
|
||||
GreaterThanCubOp score_limit(score_threshold_val);
|
||||
int limited_num_boxes = 0;
|
||||
OP_REQUIRES_OK(context,
|
||||
CountIf(context, d_sorted_scores.flat<float>().data(),
|
||||
score_limit, num_boxes, &limited_num_boxes));
|
||||
if (limited_num_boxes == 0) {
|
||||
Tensor* output_indices = nullptr;
|
||||
VLOG(1) << "Number of boxes above score threshold " << score_threshold_val
|
||||
<< " is 0";
|
||||
OP_REQUIRES_OK(context, context->allocate_output(0, TensorShape({0}),
|
||||
&output_indices));
|
||||
return;
|
||||
} else {
|
||||
VLOG(2) << "Number of boxes above threshold=" << score_threshold_val
|
||||
<< " is " << limited_num_boxes;
|
||||
}
|
||||
int num_to_keep = 0;
|
||||
// There is no guarantee that boxes are given in the for x1<x2 and/or y1<y2,
|
||||
// flip boxes if necessary!
|
||||
const bool flip_boxes = true;
|
||||
auto status = NmsGpu(
|
||||
d_sorted_boxes.flat<float>().data(), limited_num_boxes,
|
||||
iou_threshold_val, d_selected_indices.flat<int>().data(), &num_to_keep,
|
||||
context, output_size, flip_boxes, /*legacy_mode*/ false);
|
||||
TF_OP_REQUIRES_CUDA_SUCCESS(context, cudaGetLastError());
|
||||
if (!status.ok()) {
|
||||
context->SetStatus(status);
|
||||
return;
|
||||
}
|
||||
Tensor* output_indices = nullptr;
|
||||
int num_outputs = std::min(num_to_keep, output_size); // no padding!
|
||||
OP_REQUIRES_OK(context,
|
||||
context->allocate_output(0, TensorShape({num_outputs}),
|
||||
&output_indices));
|
||||
if (num_outputs == 0) {
|
||||
VLOG(1) << "No outputs!";
|
||||
return;
|
||||
} else {
|
||||
VLOG(2) << "Num outputs= " << num_outputs;
|
||||
}
|
||||
config = GetGpuLaunchConfig(num_outputs, device);
|
||||
TF_CHECK_OK(GpuLaunchKernel(
|
||||
IndexMultiSelect<int, int>, config.block_count, config.thread_per_block,
|
||||
0, device.stream(), config.virtual_thread_count,
|
||||
d_selected_indices.flat<int>().data(), sorted_indices,
|
||||
(*output_indices).flat<int>().data()));
|
||||
TF_OP_REQUIRES_CUDA_SUCCESS(context, cudaGetLastError());
|
||||
OP_REQUIRES_OK(context, DoNMS(context, boxes, scores, output_size,
|
||||
iou_threshold_val, score_threshold_val));
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -54,8 +54,7 @@ extern const int kNmsBoxesPerTread;
|
||||
Status NmsGpu(const float* d_sorted_boxes_float_ptr, const int num_boxes,
|
||||
const float iou_threshold, int* d_selected_indices,
|
||||
int* h_num_boxes_to_keep, OpKernelContext* context,
|
||||
const int max_boxes, bool flip_boxes = false,
|
||||
bool legacy_mode = false);
|
||||
const int max_boxes, bool flip_boxes = false);
|
||||
#endif
|
||||
|
||||
} // namespace tensorflow
|
||||
|
Loading…
Reference in New Issue
Block a user