sample_stats.percentile DOCFIX.

Change: 152182295
This commit is contained in:
Ian Langmore 2017-04-04 13:43:39 -08:00 committed by TensorFlower Gardener
parent 5cdc2d62c8
commit 7284cd8615

View File

@ -44,7 +44,7 @@ def percentile(x,
keep_dims=False,
validate_args=False,
name=None):
"""Compute the `q`-th percentile of `x` along leading (sample) dimensions.
"""Compute the `q`-th percentile of `x`.
Given a vector `x`, the `q`-th percentile of `x` is the value `q / 100` of the
way from the minimum to the maximum in in a sorted copy of `x`.
@ -58,7 +58,7 @@ def percentile(x,
```python
# Get 30th percentile with default ('linear') interpolation.
# Get 30th percentile with default ('nearest') interpolation.
x = [1., 2., 3., 4.]
percentile(x, q=30.)
==> 2.0
@ -91,11 +91,10 @@ def percentile(x,
axis: Optional `0-D` or `1-D` integer `Tensor` with constant values.
The axis that hold independent samples over which to return the desired
percentile. If `None` (the default), treat every dimension as a sample
dimension, returning a scalar
dimension, returning a scalar.
interpolation : {"lower", "higher", "nearest"}. Default: "nearest"
This optional parameter specifies the interpolation method to
use when the desired quantile lies between two data points
`i < j`:
use when the desired quantile lies between two data points `i < j`:
* lower: `i`.
* higher: `j`.
* nearest: `i` or `j`, whichever is nearest.