Add math utils.

PiperOrigin-RevId: 279985214
Change-Id: I92b038771acdc1735c104b6f8d1077a380f9394a
This commit is contained in:
A. Unique TensorFlower 2019-11-12 09:21:26 -08:00 committed by TensorFlower Gardener
parent e82d1b938e
commit 72633f4632
2 changed files with 51 additions and 10 deletions

View File

@ -12,16 +12,6 @@ package_group(
],
)
cc_library(
name = "timespan",
hdrs = ["timespan.h"],
deps = [
":time_utils",
"//tensorflow/core/platform:logging",
"//tensorflow/core/platform:types",
],
)
cc_library(
name = "event_span",
srcs = ["event_span.cc"],
@ -36,6 +26,25 @@ cc_library(
],
)
cc_library(
name = "math_utils",
hdrs = ["math_utils.h"],
visibility = [
"//perftools/accelerators/xprof/convert:__pkg__",
"//perftools/gputools/profiler/collector:__pkg__",
],
)
cc_library(
name = "timespan",
hdrs = ["timespan.h"],
deps = [
":time_utils",
"//tensorflow/core/platform:logging",
"//tensorflow/core/platform:types",
],
)
tf_cc_test(
name = "timespan_test",
srcs = ["timespan_test.cc"],

View File

@ -0,0 +1,32 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_CORE_PROFILER_UTILS_MATH_UTILS_H_
#define TENSORFLOW_CORE_PROFILER_UTILS_MATH_UTILS_H_
namespace tensorflow {
namespace profiler {
// Checks the divisor and returns 0 to avoid divide by zero.
inline double SafeDivide(double dividend, double divisor) {
constexpr double kEpsilon = 1.0E-10;
if ((-kEpsilon < divisor) && (divisor < kEpsilon)) return 0.0;
return dividend / divisor;
}
} // namespace profiler
} // namespace tensorflow
#endif // TENSORFLOW_CORE_PROFILER_UTILS_MATH_UTILS_H_