Fix / standardize references in Keras Applications docstrings.
PiperOrigin-RevId: 308674354 Change-Id: Id0d186974e7dcebc8a9b2d80ca940e88f20acf47
This commit is contained in:
parent
acf04f1fc8
commit
71964116c5
@ -138,9 +138,9 @@ def DenseNet(
|
||||
classifier_activation='softmax'):
|
||||
"""Instantiates the DenseNet architecture.
|
||||
|
||||
Reference paper:
|
||||
- [Densely Connected Convolutional Networks]
|
||||
(https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award)
|
||||
Reference:
|
||||
- [Densely Connected Convolutional Networks](
|
||||
https://arxiv.org/abs/1608.06993) (CVPR 2017)
|
||||
|
||||
Optionally loads weights pre-trained on ImageNet.
|
||||
Note that the data format convention used by the model is
|
||||
|
||||
@ -145,7 +145,7 @@ layers = VersionAwareLayers()
|
||||
|
||||
BASE_DOCSTRING = """Instantiates the {name} architecture.
|
||||
|
||||
Reference paper:
|
||||
Reference:
|
||||
- [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](
|
||||
https://arxiv.org/abs/1905.11946) (ICML 2019)
|
||||
|
||||
|
||||
@ -53,7 +53,7 @@ def InceptionResNetV2(include_top=True,
|
||||
**kwargs):
|
||||
"""Instantiates the Inception-ResNet v2 architecture.
|
||||
|
||||
Reference paper:
|
||||
Reference:
|
||||
- [Inception-v4, Inception-ResNet and the Impact of
|
||||
Residual Connections on Learning](https://arxiv.org/abs/1602.07261)
|
||||
(AAAI 2017)
|
||||
|
||||
@ -56,7 +56,7 @@ def InceptionV3(
|
||||
classifier_activation='softmax'):
|
||||
"""Instantiates the Inception v3 architecture.
|
||||
|
||||
Reference paper:
|
||||
Reference:
|
||||
- [Rethinking the Inception Architecture for Computer Vision](
|
||||
http://arxiv.org/abs/1512.00567) (CVPR 2016)
|
||||
|
||||
|
||||
@ -95,9 +95,10 @@ def MobileNet(input_shape=None,
|
||||
**kwargs):
|
||||
"""Instantiates the MobileNet architecture.
|
||||
|
||||
Reference paper:
|
||||
- [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
|
||||
Applications](https://arxiv.org/abs/1704.04861)
|
||||
Reference:
|
||||
- [MobileNets: Efficient Convolutional Neural Networks
|
||||
for Mobile Vision Applications](
|
||||
https://arxiv.org/abs/1704.04861)
|
||||
|
||||
Optionally loads weights pre-trained on ImageNet.
|
||||
Note that the data format convention used by the model is
|
||||
|
||||
@ -106,9 +106,9 @@ def MobileNetV2(input_shape=None,
|
||||
**kwargs):
|
||||
"""Instantiates the MobileNetV2 architecture.
|
||||
|
||||
Reference paper:
|
||||
- [MobileNetV2: Inverted Residuals and Linear Bottlenecks]
|
||||
(https://arxiv.org/abs/1801.04381) (CVPR 2018)
|
||||
Reference:
|
||||
- [MobileNetV2: Inverted Residuals and Linear Bottlenecks](
|
||||
https://arxiv.org/abs/1801.04381) (CVPR 2018)
|
||||
|
||||
Optionally loads weights pre-trained on ImageNet.
|
||||
|
||||
|
||||
@ -79,9 +79,9 @@ def NASNet(
|
||||
classifier_activation='softmax'):
|
||||
"""Instantiates a NASNet model.
|
||||
|
||||
Reference paper:
|
||||
- [Learning Transferable Architectures for Scalable Image Recognition]
|
||||
(https://arxiv.org/abs/1707.07012) (CVPR 2018)
|
||||
Reference:
|
||||
- [Learning Transferable Architectures for Scalable Image Recognition](
|
||||
https://arxiv.org/abs/1707.07012) (CVPR 2018)
|
||||
|
||||
Optionally loads weights pre-trained on ImageNet.
|
||||
Note that the data format convention used by the model is
|
||||
|
||||
@ -15,9 +15,9 @@
|
||||
# pylint: disable=invalid-name
|
||||
"""ResNet models for Keras.
|
||||
|
||||
Reference paper:
|
||||
- [Deep Residual Learning for Image Recognition]
|
||||
(https://arxiv.org/abs/1512.03385) (CVPR 2015)
|
||||
Reference:
|
||||
- [Deep Residual Learning for Image Recognition](
|
||||
https://arxiv.org/abs/1512.03385) (CVPR 2015)
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
@ -72,9 +72,9 @@ def ResNet(stack_fn,
|
||||
**kwargs):
|
||||
"""Instantiates the ResNet, ResNetV2, and ResNeXt architecture.
|
||||
|
||||
Reference paper:
|
||||
- [Deep Residual Learning for Image Recognition]
|
||||
(https://arxiv.org/abs/1512.03385) (CVPR 2015)
|
||||
Reference:
|
||||
- [Deep Residual Learning for Image Recognition](
|
||||
https://arxiv.org/abs/1512.03385) (CVPR 2015)
|
||||
|
||||
Optionally loads weights pre-trained on ImageNet.
|
||||
Note that the data format convention used by the model is
|
||||
|
||||
@ -138,7 +138,7 @@ decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|
||||
|
||||
DOC = """
|
||||
|
||||
Reference paper:
|
||||
Reference:
|
||||
- [Identity Mappings in Deep Residual Networks]
|
||||
(https://arxiv.org/abs/1603.05027) (CVPR 2016)
|
||||
|
||||
|
||||
@ -18,7 +18,7 @@
|
||||
On ImageNet, this model gets to a top-1 validation accuracy of 0.790
|
||||
and a top-5 validation accuracy of 0.945.
|
||||
|
||||
Reference paper:
|
||||
Reference:
|
||||
- [Xception: Deep Learning with Depthwise Separable Convolutions](
|
||||
https://arxiv.org/abs/1610.02357) (CVPR 2017)
|
||||
|
||||
@ -60,6 +60,10 @@ def Xception(
|
||||
classifier_activation='softmax'):
|
||||
"""Instantiates the Xception architecture.
|
||||
|
||||
Reference:
|
||||
- [Xception: Deep Learning with Depthwise Separable Convolutions](
|
||||
https://arxiv.org/abs/1610.02357) (CVPR 2017)
|
||||
|
||||
Optionally loads weights pre-trained on ImageNet.
|
||||
Note that the data format convention used by the model is
|
||||
the one specified in your Keras config at `~/.keras/keras.json`.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user