Implement lite/micro/kernels/zeros_like.cc and its test code

This commit is contained in:
rsun 2021-02-01 16:40:39 -08:00
parent 7128ad8140
commit 7108450567
6 changed files with 195 additions and 27 deletions

View File

@ -144,6 +144,7 @@ cc_library(
"tanh.cc",
"transpose_conv.cc",
"unpack.cc",
"zeros_like.cc",
] + select({
"//conditions:default": [
"conv.cc",

View File

@ -42,6 +42,7 @@ TfLiteRegistration Register_SOFTMAX();
TfLiteRegistration Register_SPACE_TO_BATCH_ND();
TfLiteRegistration Register_SVDF();
TfLiteRegistration Register_TRANSPOSE_CONV_2D();
TfLiteRegistration Register_ZEROS_LIKE();
namespace ops {
namespace micro {

View File

@ -13,18 +13,13 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include <string.h>
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace micro {
namespace zeros_like {
namespace {
constexpr int kInputTensor = 0;
constexpr int kOutputTensor = 0;
@ -39,26 +34,32 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
GetOutputSafe(context, node, kOutputTensor, &output));
output->type = input->type;
return context->ResizeTensor(context, output,
TfLiteIntArrayCopy(input->dims));
return kTfLiteOk;
}
template <typename T>
void resetZeros(T* out, int num_elements) {
for (int i = 0; i < num_elements; ++i) {
out[i] = static_cast<T>(0);
}
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
const int num_elements = NumElements(input);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
int flat_size = MatchingFlatSize(tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorShape(output));
switch (input->type) {
case kTfLiteInt64:
memset(GetTensorData<int64_t>(output), 0, num_elements * sizeof(int64_t));
resetZeros(tflite::micro::GetTensorData<int64_t>(output), flat_size);
break;
case kTfLiteInt32:
memset(GetTensorData<int32_t>(output), 0, num_elements * sizeof(int32_t));
resetZeros(tflite::micro::GetTensorData<int32_t>(output), flat_size);
break;
case kTfLiteFloat32:
memset(GetTensorData<float>(output), 0, num_elements * sizeof(float));
resetZeros(tflite::micro::GetTensorData<float>(output), flat_size);
break;
default:
TF_LITE_KERNEL_LOG(context,
@ -69,15 +70,17 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
}
return kTfLiteOk;
}
} // namespace
} // namespace zeros_like
TfLiteRegistration* Register_ZEROS_LIKE() {
static TfLiteRegistration r = {/*init=*/nullptr, /*free=*/nullptr,
zeros_like::Prepare, zeros_like::Eval};
return &r;
TfLiteRegistration Register_ZEROS_LIKE() {
return {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/Prepare,
/*invoke=*/Eval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@ -0,0 +1,156 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/all_ops_resolver.h"
#include "tensorflow/lite/micro/kernels/kernel_runner.h"
#include "tensorflow/lite/micro/test_helpers.h"
#include "tensorflow/lite/micro/testing/micro_test.h"
namespace tflite {
namespace testing {
namespace {
void TestZerosLikeFloat(const int* input_dims_data, const float* input_data,
const float* expected_output_data,
float* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInts(input_dims_data);
const int output_dims_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateTensor(input_data, input_dims),
CreateTensor(output_data, output_dims),
};
int inputs_array_data[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
const TfLiteRegistration registration = Register_ZEROS_LIKE();
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
outputs_array,
/*builtin_data=*/nullptr, micro_test::reporter);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
for (int i = 0; i < output_dims_count; ++i) {
TF_LITE_MICRO_EXPECT_EQ(expected_output_data[i], output_data[i]);
}
}
void TestZerosLikeInt32(const int* input_dims_data, const int32_t* input_data,
const int32_t* expected_output_data,
int32_t* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInts(input_dims_data);
const int output_dims_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateTensor(input_data, input_dims),
CreateTensor(output_data, output_dims),
};
int inputs_array_data[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
const TfLiteRegistration registration = Register_ZEROS_LIKE();
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
outputs_array,
/*builtin_data=*/nullptr, micro_test::reporter);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
for (int i = 0; i < output_dims_count; ++i) {
TF_LITE_MICRO_EXPECT_EQ(expected_output_data[i], output_data[i]);
}
}
void TestZerosLikeInt64(const int* input_dims_data, const int64_t* input_data,
const int64_t* expected_output_data,
int64_t* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInts(input_dims_data);
const int output_dims_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateTensor(input_data, input_dims),
CreateTensor(output_data, output_dims),
};
int inputs_array_data[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
const TfLiteRegistration registration = Register_ZEROS_LIKE();
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
outputs_array,
/*builtin_data=*/nullptr, micro_test::reporter);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
for (int i = 0; i < output_dims_count; ++i) {
TF_LITE_MICRO_EXPECT_EQ(expected_output_data[i], output_data[i]);
}
}
} // namespace
} // namespace testing
} // namespace tflite
TF_LITE_MICRO_TESTS_BEGIN
TF_LITE_MICRO_TEST(TestZerosLikeFloat) {
float output_data[6];
const int input_dims[] = {2, 3};
const float input_values[] = {-2.0, -1.0, 0.0, 1.0, 2.0, 3.0};
const float golden[] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
tflite::testing::TestZerosLikeFloat(input_dims, input_values, golden,
output_data);
}
TF_LITE_MICRO_TEST(TestZerosLikeInt32) {
int32_t output_data[4];
const int input_dims[] = {1, 2, 2, 1};
const int32_t input_values[] = {-2, -1, 0, 3};
const int32_t golden[] = {0, 0, 0, 0};
tflite::testing::TestZerosLikeInt32(input_dims, input_values, golden,
output_data);
}
TF_LITE_MICRO_TEST(TestZerosLikeInt64) {
int64_t output_data[4];
const int input_dims[] = {1, 2, 2, 1};
const int64_t input_values[] = {-2, -1, 0, 3};
const int64_t golden[] = {0, 0, 0, 0};
tflite::testing::TestZerosLikeInt64(input_dims, input_values, golden,
output_data);
}
TF_LITE_MICRO_TESTS_END

View File

@ -438,6 +438,11 @@ class MicroMutableOpResolver : public MicroOpResolver {
tflite::ops::micro::Register_UNPACK(), ParseUnpack);
}
TfLiteStatus AddZerosLike() {
return AddBuiltin(BuiltinOperator_ZEROS_LIKE,
Register_ZEROS_LIKE(), ParseZerosLike);
}
unsigned int GetRegistrationLength() { return registrations_len_; }
private:

View File

@ -301,6 +301,7 @@ tensorflow/lite/micro/kernels/svdf_test.cc \
tensorflow/lite/micro/kernels/tanh_test.cc \
tensorflow/lite/micro/kernels/transpose_conv_test.cc \
tensorflow/lite/micro/kernels/unpack_test.cc \
tensorflow/lite/micro/kernels/zeros_like_test.cc \
tensorflow/lite/micro/memory_planner/greedy_memory_planner_test.cc \
tensorflow/lite/micro/memory_planner/linear_memory_planner_test.cc
@ -357,7 +358,8 @@ tensorflow/lite/micro/kernels/svdf.cc \
tensorflow/lite/micro/kernels/svdf_common.cc \
tensorflow/lite/micro/kernels/tanh.cc \
tensorflow/lite/micro/kernels/transpose_conv.cc \
tensorflow/lite/micro/kernels/unpack.cc
tensorflow/lite/micro/kernels/unpack.cc \
tensorflow/lite/micro/kernels/zeros_like.cc
MICROLITE_TEST_HDRS := \
$(wildcard tensorflow/lite/micro/testing/*.h)