Apply tf1-tf2 renames to tensorflow/lite docstrings and comments.
No code changes, only doc-strings and comments. PiperOrigin-RevId: 243841407
This commit is contained in:
parent
05392b422d
commit
70dfecf6a1
@ -158,7 +158,7 @@ class BidirectionalSequenceLstmTest(test_util.TensorFlowTestCase):
|
||||
bw_lstm_layer: The backward lstm layer either a single lstm cell or a
|
||||
multi lstm cell.
|
||||
sess: Old session.
|
||||
saver: saver created by tf.train.Saver()
|
||||
saver: saver created by tf.compat.v1.train.Saver()
|
||||
is_dynamic_rnn: use dynamic_rnn or not.
|
||||
|
||||
Returns:
|
||||
|
@ -184,7 +184,7 @@ class BidirectionalSequenceRnnTest(test_util.TensorFlowTestCase):
|
||||
bw_rnn_layer: The backward rnn layer either a single rnn cell or a multi
|
||||
rnn cell.
|
||||
sess: Old session.
|
||||
saver: Saver created by tf.train.Saver()
|
||||
saver: Saver created by tf.compat.v1.train.Saver()
|
||||
is_dynamic_rnn: Use dynamic_rnn or not.
|
||||
use_sequence_length: Whether to use sequence length or not. Default to
|
||||
False.
|
||||
|
@ -56,7 +56,7 @@ def dynamic_rnn(cell,
|
||||
|
||||
```python
|
||||
# create a BasicRNNCell
|
||||
rnn_cell = tf.nn.rnn_cell.BasicRNNCell(hidden_size)
|
||||
rnn_cell = tf.compat.v1.nn.rnn_cell.BasicRNNCell(hidden_size)
|
||||
|
||||
# 'outputs' is a tensor of shape [batch_size, max_time, cell_state_size]
|
||||
|
||||
@ -64,22 +64,22 @@ def dynamic_rnn(cell,
|
||||
initial_state = rnn_cell.zero_state(batch_size, dtype=tf.float32)
|
||||
|
||||
# 'state' is a tensor of shape [batch_size, cell_state_size]
|
||||
outputs, state = tf.nn.dynamic_rnn(rnn_cell, input_data,
|
||||
outputs, state = tf.compat.v1.nn.dynamic_rnn(rnn_cell, input_data,
|
||||
initial_state=initial_state,
|
||||
dtype=tf.float32)
|
||||
```
|
||||
|
||||
```python
|
||||
# create 2 LSTMCells
|
||||
rnn_layers = [tf.nn.rnn_cell.LSTMCell(size) for size in [128, 256]]
|
||||
rnn_layers = [tf.compat.v1.nn.rnn_cell.LSTMCell(size) for size in [128, 256]]
|
||||
|
||||
# create a RNN cell composed sequentially of a number of RNNCells
|
||||
multi_rnn_cell = tf.nn.rnn_cell.MultiRNNCell(rnn_layers)
|
||||
multi_rnn_cell = tf.compat.v1.nn.rnn_cell.MultiRNNCell(rnn_layers)
|
||||
|
||||
# 'outputs' is a tensor of shape [batch_size, max_time, 256]
|
||||
# 'state' is a N-tuple where N is the number of LSTMCells containing a
|
||||
# tf.contrib.rnn.LSTMStateTuple for each cell
|
||||
outputs, state = tf.nn.dynamic_rnn(cell=multi_rnn_cell,
|
||||
# tf.nn.rnn_cell.LSTMStateTuple for each cell
|
||||
outputs, state = tf.compat.v1.nn.dynamic_rnn(cell=multi_rnn_cell,
|
||||
inputs=data,
|
||||
dtype=tf.float32)
|
||||
```
|
||||
|
@ -143,7 +143,7 @@ class UnidirectionalSequenceLstmTest(test_util.TensorFlowTestCase):
|
||||
Args:
|
||||
lstm_layer: The lstm layer either a single lstm cell or a multi lstm cell.
|
||||
sess: Old session.
|
||||
saver: Saver created by tf.train.Saver()
|
||||
saver: Saver created by tf.compat.v1.train.Saver()
|
||||
is_dynamic_rnn: Use dynamic_rnn or not.
|
||||
|
||||
Returns:
|
||||
|
@ -138,7 +138,7 @@ class UnidirectionalSequenceRnnTest(test_util.TensorFlowTestCase):
|
||||
Args:
|
||||
rnn_layer: The rnn layer either a single rnn cell or a multi rnn cell.
|
||||
sess: Old session.
|
||||
saver: saver created by tf.train.Saver()
|
||||
saver: saver created by tf.compat.v1.train.Saver()
|
||||
is_dynamic_rnn: use dynamic_rnn or not.
|
||||
|
||||
Returns:
|
||||
|
@ -99,7 +99,7 @@ def toco_convert_protos(model_flags_str, toco_flags_str, input_data_str):
|
||||
"""Convert `input_data_str` according to model and toco parameters.
|
||||
|
||||
Unless you know what you are doing consider using
|
||||
the more friendly `tf.lite.toco_convert`.
|
||||
the more friendly `tf.compat.v1.lite.toco_convert`.
|
||||
|
||||
Args:
|
||||
model_flags_str: Serialized proto describing model properties, see
|
||||
|
@ -30,13 +30,13 @@ Example:
|
||||
output, = custom.add_outputs(output)
|
||||
return output
|
||||
|
||||
image = tf.placeholder(tf.float32, (1, 16, 16, 1))
|
||||
image = tf.compat.v1.placeholder(tf.float32, (1, 16, 16, 1))
|
||||
output = tf.identity(tflite_cool_activation(image))
|
||||
|
||||
session = tf.Session()
|
||||
session = tf.compat.v1.Session()
|
||||
|
||||
graphdef_to_convert = tf.lite.convert_op_hints_to_stubs(session)
|
||||
tflite_graph = tf.lite.toco_convert(graphdef_to_convert, [image], [output])
|
||||
tflite_graph = tf.compat.v1.lite.toco_convert(graphdef_to_convert, [image], [output])
|
||||
with open("/tmp/graph.fb", "wb") as fp:
|
||||
fp.write(tflite_graph)
|
||||
|
||||
|
@ -149,7 +149,7 @@ def set_tensor_shapes(tensors, shapes):
|
||||
|
||||
|
||||
def get_grappler_config(enable_layout_optimizer=False, function_only=False):
|
||||
"""Creates a tf.ConfigProto for configuring Grappler.
|
||||
"""Creates a tf.compat.v1.ConfigProto for configuring Grappler.
|
||||
|
||||
Args:
|
||||
enable_layout_optimizer: Bool indicating whether to run the layout
|
||||
|
@ -625,7 +625,7 @@ def make_pool_tests(pool_op_in):
|
||||
"""Make a set of tests to do average pooling.
|
||||
|
||||
Args:
|
||||
pool_op_in: TensorFlow pooling operation to test i.e. `tf.nn.avg_pool`.
|
||||
pool_op_in: TensorFlow pooling operation to test i.e. `tf.nn.avg_pool2d`.
|
||||
|
||||
Returns:
|
||||
A function representing the true generator (after curried pool_op_in).
|
||||
@ -3859,7 +3859,7 @@ def make_conv2d_transpose_tests(options):
|
||||
|
||||
|
||||
# Since compute output_shape is fairly complicated for
|
||||
# tf.nn.conv2d_backprop_input input_sizes argument, so we here first perform a
|
||||
# tf.nn.conv2d_transpose input_sizes argument, so we here first perform a
|
||||
# "conv2d" operation to get the output, then we use the output to feed in
|
||||
# tf.nn.conv2d_backprop_input.
|
||||
# This test will depend on the "conv2d" operation's correctness.
|
||||
@ -4567,7 +4567,7 @@ def make_reverse_sequence_tests(options):
|
||||
|
||||
@register_make_test_function()
|
||||
def make_matrix_diag_tests(options):
|
||||
"""Make a set of tests for tf.matrix_diag op."""
|
||||
"""Make a set of tests for tf.linalg.diag op."""
|
||||
|
||||
test_parameters = [
|
||||
{
|
||||
@ -4595,7 +4595,7 @@ def make_matrix_diag_tests(options):
|
||||
|
||||
@register_make_test_function()
|
||||
def make_matrix_set_diag_tests(options):
|
||||
"""Make a set of tests for tf.matrix_set_diag op."""
|
||||
"""Make a set of tests for tf.linalg.set_diag op."""
|
||||
|
||||
test_parameters = [
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user