Adding constant slice op support.

PiperOrigin-RevId: 196021899
This commit is contained in:
A. Unique TensorFlower 2018-05-09 13:43:14 -07:00 committed by TensorFlower Gardener
parent cc290f8a57
commit 705550357f
4 changed files with 168 additions and 0 deletions

View File

@ -273,6 +273,7 @@ cc_library(
"graph_transformations/resolve_constant_range.cc",
"graph_transformations/resolve_constant_reshape.cc",
"graph_transformations/resolve_constant_shape_or_rank.cc",
"graph_transformations/resolve_constant_slice.cc",
"graph_transformations/resolve_constant_stack.cc",
"graph_transformations/resolve_constant_strided_slice.cc",
"graph_transformations/resolve_constant_transpose.cc",

View File

@ -182,6 +182,7 @@ DECLARE_GRAPH_TRANSFORMATION(ResolveTransposeAttributes)
DECLARE_GRAPH_TRANSFORMATION(ResolveConstantRandomUniform)
DECLARE_GRAPH_TRANSFORMATION(ResolveConstantRange)
DECLARE_GRAPH_TRANSFORMATION(ResolveConstantShapeOrRank)
DECLARE_GRAPH_TRANSFORMATION(ResolveConstantSlice)
DECLARE_GRAPH_TRANSFORMATION(ResolveConstantStack)
DECLARE_GRAPH_TRANSFORMATION(ResolveConstantStridedSlice)
DECLARE_GRAPH_TRANSFORMATION(ResolveConstantFill)

View File

@ -0,0 +1,165 @@
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <vector>
#include "tensorflow/contrib/lite/toco/graph_transformations/graph_transformations.h"
#include "tensorflow/contrib/lite/toco/model.h"
#include "tensorflow/contrib/lite/toco/tooling_util.h"
#include "tensorflow/core/platform/logging.h"
namespace toco {
namespace {
template <ArrayDataType Type>
bool Slice(SliceOperator const& op, Array const& input_array,
Array* output_array) {
// Implementation is taken from the tflite kernel.
CHECK(input_array.data_type == Type);
CHECK(output_array->data_type == Type);
const auto& input_data = input_array.GetBuffer<Type>().data;
// Create a buffer for the output array.
std::vector<DataType<Type>>& output_data =
output_array->GetMutableBuffer<Type>().data;
output_data.resize(RequiredBufferSizeForShape(output_array->shape()));
std::vector<int> size = op.size;
if (size.size() != op.begin.size()) {
// Broadcast the end positions.
CHECK_EQ(op.size.size(), 1);
int broadcast_size = size[0];
while (size.size() < op.begin.size()) size.push_back(broadcast_size);
}
// Calculate begin and end indices along each dimension.
CHECK_LE(op.begin.size(), 4);
CHECK_LE(size.size(), 4);
std::vector<int> begin = op.begin;
std::vector<int> end;
for (int i = 0; i < begin.size(); ++i) {
int dim_size = size[i];
if (dim_size == -1) {
// -1 means the rest of the dimension.
dim_size = input_array.shape().dims()[i] - begin[i];
}
CHECK_GE(dim_size, 1);
end.push_back(begin[i] + dim_size - 1);
}
// Pad out so that we always have 4 dims, makes this loop easier.
while (begin.size() < 4) begin.insert(begin.begin(), 0);
while (end.size() < 4) end.insert(end.begin(), 0);
Shape padded_shape = input_array.shape();
while (padded_shape.dimensions_count() < 4) {
padded_shape.mutable_dims()->insert(padded_shape.mutable_dims()->begin(),
1);
}
auto* out_ptr = output_data.data();
for (int in_b = begin[0]; in_b <= end[0]; ++in_b) {
for (int in_h = begin[1]; in_h <= end[1]; ++in_h) {
for (int in_w = begin[2]; in_w <= end[2]; ++in_w) {
for (int in_d = begin[3]; in_d <= end[3]; ++in_d) {
*out_ptr++ =
input_data[Offset(padded_shape, {in_b, in_h, in_w, in_d})];
}
}
}
}
return true;
}
} // namespace
bool ResolveConstantSlice::Run(Model* model, std::size_t op_index) {
const auto it = model->operators.begin() + op_index;
const auto* base_op = it->get();
if (base_op->type != OperatorType::kSlice) {
return false;
}
const SliceOperator* op = static_cast<const SliceOperator*>(base_op);
CHECK_EQ(op->outputs.size(), 1);
auto& output_array = model->GetArray(op->outputs[0]);
if (output_array.data_type == ArrayDataType::kNone) {
// Yield until the output type has been set by PropagateArrayDataTypes.
return false;
}
if (!output_array.has_shape()) {
// Yield until the output shape has been set by PropagateFixedShapes.
return false;
}
if (op->begin.empty() || op->size.empty()) {
// Attributes have not resolved yet.
return false;
}
const auto& input_array = model->GetArray(op->inputs[0]);
if (!input_array.has_shape()) {
// Yield until the value shape has been resolved.
return false;
}
if (!IsConstantParameterArray(*model, op->inputs[0])) {
// Yield until the value is constant.
return false;
}
CHECK(!output_array.buffer);
switch (output_array.data_type) {
case ArrayDataType::kFloat:
if (!Slice<ArrayDataType::kFloat>(*op, input_array, &output_array)) {
return false;
}
break;
case ArrayDataType::kUint8:
if (!Slice<ArrayDataType::kUint8>(*op, input_array, &output_array)) {
return false;
}
break;
case ArrayDataType::kInt32:
if (!Slice<ArrayDataType::kInt32>(*op, input_array, &output_array)) {
return false;
}
break;
case ArrayDataType::kInt64:
if (!Slice<ArrayDataType::kInt64>(*op, input_array, &output_array)) {
return false;
}
break;
default:
LOG(FATAL) << "Unsupported data type input to Slice op with output \""
<< op->outputs[0] << "\"";
break;
}
// Erase input array if no longer used.
if (IsDiscardableArray(*model, op->inputs[0]) &&
CountOpsWithInput(*model, op->inputs[0]) == 1) {
model->EraseArray(op->inputs[0]);
}
// Erase the operator
model->operators.erase(it);
return true;
}
} // namespace toco

View File

@ -86,6 +86,7 @@ void MakeGeneralGraphTransformationsSet(
transformations->Add(new ResolveConstantRandomUniform);
transformations->Add(new ResolveConstantRange);
transformations->Add(new ResolveConstantReshape);
transformations->Add(new ResolveConstantSlice);
transformations->Add(new ResolveConstantStack);
transformations->Add(new ResolveConstantStridedSlice);
transformations->Add(new ResolveConstantTranspose);