From 70438aaa2b060484b67c1360c213dedd24db0625 Mon Sep 17 00:00:00 2001 From: Martin Wicke Date: Mon, 4 Mar 2019 11:23:57 -0800 Subject: [PATCH] Use eager-friendly evaluation for bincount_op_test. PiperOrigin-RevId: 236690668 --- .../python/kernel_tests/bincount_op_test.py | 68 ++++++++++--------- 1 file changed, 36 insertions(+), 32 deletions(-) diff --git a/tensorflow/python/kernel_tests/bincount_op_test.py b/tensorflow/python/kernel_tests/bincount_op_test.py index d064d736cf2..2168206c3a5 100644 --- a/tensorflow/python/kernel_tests/bincount_op_test.py +++ b/tensorflow/python/kernel_tests/bincount_op_test.py @@ -30,44 +30,48 @@ from tensorflow.python.platform import googletest class BincountTest(test_util.TensorFlowTestCase): - @test_util.run_deprecated_v1 def test_empty(self): with self.session(use_gpu=True): - self.assertAllEqual( - math_ops.bincount([], minlength=5).eval(), [0, 0, 0, 0, 0]) - self.assertAllEqual(math_ops.bincount([], minlength=1).eval(), [0]) - self.assertAllEqual(math_ops.bincount([], minlength=0).eval(), []) - self.assertEqual( - math_ops.bincount([], minlength=0, dtype=np.float32).eval().dtype, - np.float32) - self.assertEqual( - math_ops.bincount([], minlength=3, dtype=np.float64).eval().dtype, - np.float64) + self.assertAllEqual(self.evaluate(math_ops.bincount([], minlength=5)), + [0, 0, 0, 0, 0]) + self.assertAllEqual(self.evaluate(math_ops.bincount([], minlength=1)), + [0]) + self.assertAllEqual(self.evaluate(math_ops.bincount([], minlength=0)), + []) + self.assertEqual(self.evaluate(math_ops.bincount([], minlength=0, + dtype=np.float32)).dtype, + np.float32) + self.assertEqual(self.evaluate(math_ops.bincount([], minlength=3, + dtype=np.float64)).dtype, + np.float64) - @test_util.run_deprecated_v1 def test_values(self): with self.session(use_gpu=True): - self.assertAllEqual( - math_ops.bincount([1, 1, 1, 2, 2, 3]).eval(), [0, 3, 2, 1]) + self.assertAllEqual(self.evaluate(math_ops.bincount([1, 1, 1, 2, 2, 3])), + [0, 3, 2, 1]) arr = [1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5] - self.assertAllEqual(math_ops.bincount(arr).eval(), [0, 5, 4, 3, 2, 1]) + self.assertAllEqual(self.evaluate(math_ops.bincount(arr)), + [0, 5, 4, 3, 2, 1]) arr += [0, 0, 0, 0, 0, 0] - self.assertAllEqual(math_ops.bincount(arr).eval(), [6, 5, 4, 3, 2, 1]) + self.assertAllEqual(self.evaluate(math_ops.bincount(arr)), + [6, 5, 4, 3, 2, 1]) - self.assertAllEqual(math_ops.bincount([]).eval(), []) - self.assertAllEqual(math_ops.bincount([0, 0, 0]).eval(), [3]) - self.assertAllEqual(math_ops.bincount([5]).eval(), [0, 0, 0, 0, 0, 1]) - self.assertAllEqual( - math_ops.bincount(np.arange(10000)).eval(), np.ones(10000)) + self.assertAllEqual(self.evaluate(math_ops.bincount([])), []) + self.assertAllEqual(self.evaluate(math_ops.bincount([0, 0, 0])), [3]) + self.assertAllEqual(self.evaluate(math_ops.bincount([5])), + [0, 0, 0, 0, 0, 1]) + self.assertAllEqual(self.evaluate(math_ops.bincount(np.arange(10000))), + np.ones(10000)) - @test_util.run_deprecated_v1 def test_maxlength(self): with self.session(use_gpu=True): - self.assertAllEqual(math_ops.bincount([5], maxlength=3).eval(), [0, 0, 0]) - self.assertAllEqual(math_ops.bincount([1], maxlength=3).eval(), [0, 1]) - self.assertAllEqual(math_ops.bincount([], maxlength=3).eval(), []) + self.assertAllEqual(self.evaluate(math_ops.bincount([5], maxlength=3)), + [0, 0, 0]) + self.assertAllEqual(self.evaluate(math_ops.bincount([1], maxlength=3)), + [0, 1]) + self.assertAllEqual(self.evaluate(math_ops.bincount([], maxlength=3)), + []) - @test_util.run_deprecated_v1 def test_random_with_weights(self): num_samples = 10000 with self.session(use_gpu=True): @@ -79,9 +83,9 @@ class BincountTest(test_util.TensorFlowTestCase): else: weights = np.random.random(num_samples) self.assertAllClose( - math_ops.bincount(arr, weights).eval(), np.bincount(arr, weights)) + self.evaluate(math_ops.bincount(arr, weights)), + np.bincount(arr, weights)) - @test_util.run_deprecated_v1 def test_random_without_weights(self): num_samples = 10000 with self.session(use_gpu=True): @@ -90,20 +94,20 @@ class BincountTest(test_util.TensorFlowTestCase): arr = np.random.randint(0, 1000, num_samples) weights = np.ones(num_samples).astype(dtype) self.assertAllClose( - math_ops.bincount(arr, None).eval(), np.bincount(arr, weights)) + self.evaluate(math_ops.bincount(arr, None)), + np.bincount(arr, weights)) - @test_util.run_deprecated_v1 def test_zero_weights(self): with self.session(use_gpu=True): self.assertAllEqual( - math_ops.bincount(np.arange(1000), np.zeros(1000)).eval(), + self.evaluate(math_ops.bincount(np.arange(1000), np.zeros(1000))), np.zeros(1000)) def test_negative(self): # unsorted_segment_sum will only report InvalidArgumentError on CPU with self.cached_session(): with self.assertRaises(errors.InvalidArgumentError): - math_ops.bincount([1, 2, 3, -1, 6, 8]).eval() + self.evaluate(math_ops.bincount([1, 2, 3, -1, 6, 8])) @test_util.run_deprecated_v1 def test_shape_function(self):