Updates Swift and ObjC READMEs and quickstart.
PiperOrigin-RevId: 247513844
This commit is contained in:
parent
3eb4a44f05
commit
6f980870f3
@ -5,7 +5,7 @@ solution for Objective-C developers. It enables low-latency inference of
|
|||||||
on-device machine learning models with a small binary size and fast performance
|
on-device machine learning models with a small binary size and fast performance
|
||||||
supporting hardware acceleration.
|
supporting hardware acceleration.
|
||||||
|
|
||||||
## Getting Started
|
## Build TensorFlow with iOS support
|
||||||
|
|
||||||
To build the Objective-C TensorFlow Lite library on Apple platforms,
|
To build the Objective-C TensorFlow Lite library on Apple platforms,
|
||||||
[install from source](https://www.tensorflow.org/install/source#setup_for_linux_and_macos)
|
[install from source](https://www.tensorflow.org/install/source#setup_for_linux_and_macos)
|
||||||
@ -19,9 +19,34 @@ python configure.py
|
|||||||
|
|
||||||
Follow the prompts and when asked to build TensorFlow with iOS support, enter `y`.
|
Follow the prompts and when asked to build TensorFlow with iOS support, enter `y`.
|
||||||
|
|
||||||
### Bazel
|
### CocoaPods developers
|
||||||
|
|
||||||
In your `BUILD` file, add the `TensorFlowLite` dependency:
|
Add the TensorFlow Lite pod to your `Podfile`:
|
||||||
|
|
||||||
|
```ruby
|
||||||
|
pod 'TensorFlowLiteObjC'
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, run `pod install`.
|
||||||
|
|
||||||
|
In your Objective-C files, import the umbrella header:
|
||||||
|
|
||||||
|
```objectivec
|
||||||
|
#import "TFLTensorFlowLite.h"
|
||||||
|
```
|
||||||
|
|
||||||
|
Or, the module if you set `CLANG_ENABLE_MODULES = YES` in your Xcode project:
|
||||||
|
|
||||||
|
```objectivec
|
||||||
|
@import TFLTensorFlowLite;
|
||||||
|
```
|
||||||
|
|
||||||
|
Note: To import the TensorFlow Lite module in your Objective-C files, you must
|
||||||
|
also include `use_frameworks!` in your `Podfile`.
|
||||||
|
|
||||||
|
### Bazel developers
|
||||||
|
|
||||||
|
In your `BUILD` file, add the `TensorFlowLite` dependency to your target:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
objc_library(
|
objc_library(
|
||||||
@ -37,6 +62,12 @@ In your Objective-C files, import the umbrella header:
|
|||||||
#import "TFLTensorFlowLite.h"
|
#import "TFLTensorFlowLite.h"
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Or, the module if you set `CLANG_ENABLE_MODULES = YES` in your Xcode project:
|
||||||
|
|
||||||
|
```objectivec
|
||||||
|
@import TFLTensorFlowLite;
|
||||||
|
```
|
||||||
|
|
||||||
Build the `TensorFlowLite` Objective-C library target:
|
Build the `TensorFlowLite` Objective-C library target:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
@ -49,36 +80,14 @@ Build the `TensorFlowLiteTests` target:
|
|||||||
bazel test tensorflow/lite/experimental/objc:TensorFlowLiteTests
|
bazel test tensorflow/lite/experimental/objc:TensorFlowLiteTests
|
||||||
```
|
```
|
||||||
|
|
||||||
### Tulsi
|
#### Generate the Xcode project using Tulsi
|
||||||
|
|
||||||
Open the `TensorFlowLite.tulsiproj` using the
|
Open the `//tensorflow/lite/experimental/objc/TensorFlowLite.tulsiproj` using
|
||||||
[TulsiApp](https://github.com/bazelbuild/tulsi) or by running the
|
the [TulsiApp](https://github.com/bazelbuild/tulsi)
|
||||||
|
or by running the
|
||||||
[`generate_xcodeproj.sh`](https://github.com/bazelbuild/tulsi/blob/master/src/tools/generate_xcodeproj.sh)
|
[`generate_xcodeproj.sh`](https://github.com/bazelbuild/tulsi/blob/master/src/tools/generate_xcodeproj.sh)
|
||||||
script from the root `tensorflow` directory:
|
script from the root `tensorflow` directory:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
generate_xcodeproj.sh --genconfig tensorflow/lite/experimental/objc/TensorFlowLite.tulsiproj:TensorFlowLite --outputfolder ~/path/to/generated/TensorFlowLite.xcodeproj
|
generate_xcodeproj.sh --genconfig tensorflow/lite/experimental/objc/TensorFlowLite.tulsiproj:TensorFlowLite --outputfolder ~/path/to/generated/TensorFlowLite.xcodeproj
|
||||||
```
|
```
|
||||||
|
|
||||||
### CocoaPods
|
|
||||||
|
|
||||||
Add the following to your `Podfile`:
|
|
||||||
|
|
||||||
```ruby
|
|
||||||
pod 'TensorFlowLiteObjC'
|
|
||||||
```
|
|
||||||
|
|
||||||
Then, run `pod install`.
|
|
||||||
|
|
||||||
In your Objective-C files, import the umbrella header:
|
|
||||||
|
|
||||||
```objectivec
|
|
||||||
#import "TFLTensorFlowLite.h"
|
|
||||||
```
|
|
||||||
|
|
||||||
Or, the module if `CLANG_ENABLE_MODULES = YES` and `use_frameworks!` is
|
|
||||||
specified in your `Podfile`:
|
|
||||||
|
|
||||||
```objectivec
|
|
||||||
@import TFLTensorFlowLite;
|
|
||||||
```
|
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
# Run `pod lib lint TensorFlowLiteObjC.podspec` to ensure this is a valid spec.
|
|
||||||
|
|
||||||
Pod::Spec.new do |s|
|
Pod::Spec.new do |s|
|
||||||
s.name = 'TensorFlowLiteObjC'
|
s.name = 'TensorFlowLiteObjC'
|
||||||
s.version = '0.2.0'
|
s.version = '0.2.0'
|
||||||
|
@ -5,7 +5,7 @@ solution for Swift developers. It enables low-latency inference of on-device
|
|||||||
machine learning models with a small binary size and fast performance supporting
|
machine learning models with a small binary size and fast performance supporting
|
||||||
hardware acceleration.
|
hardware acceleration.
|
||||||
|
|
||||||
## Getting Started
|
## Build TensorFlow with iOS support
|
||||||
|
|
||||||
To build the Swift TensorFlow Lite library on Apple platforms,
|
To build the Swift TensorFlow Lite library on Apple platforms,
|
||||||
[install from source](https://www.tensorflow.org/install/source#setup_for_linux_and_macos)
|
[install from source](https://www.tensorflow.org/install/source#setup_for_linux_and_macos)
|
||||||
@ -19,9 +19,25 @@ python configure.py
|
|||||||
|
|
||||||
Follow the prompts and when asked to build TensorFlow with iOS support, enter `y`.
|
Follow the prompts and when asked to build TensorFlow with iOS support, enter `y`.
|
||||||
|
|
||||||
### Bazel
|
### CocoaPods developers
|
||||||
|
|
||||||
In your `BUILD` file, add the `TensorFlowLite` dependency:
|
Add the TensorFlow Lite pod to your `Podfile`:
|
||||||
|
|
||||||
|
```ruby
|
||||||
|
pod 'TensorFlowLiteSwift'
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, run `pod install`.
|
||||||
|
|
||||||
|
In your Swift files, import the module:
|
||||||
|
|
||||||
|
```swift
|
||||||
|
import TensorFlowLite
|
||||||
|
```
|
||||||
|
|
||||||
|
### Bazel developers
|
||||||
|
|
||||||
|
In your `BUILD` file, add the `TensorFlowLite` dependency to your target:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
swift_library(
|
swift_library(
|
||||||
@ -49,12 +65,12 @@ Build the `TensorFlowLiteTests` target:
|
|||||||
bazel test tensorflow/lite/experimental/swift:TensorFlowLiteTests --swiftcopt=-enable-testing
|
bazel test tensorflow/lite/experimental/swift:TensorFlowLiteTests --swiftcopt=-enable-testing
|
||||||
```
|
```
|
||||||
|
|
||||||
Note that `--swiftcopt=-enable-testing` is required for optimized builds (`-c opt`).
|
Note: `--swiftcopt=-enable-testing` is required for optimized builds (`-c opt`).
|
||||||
|
|
||||||
### Tulsi
|
#### Generate the Xcode project using Tulsi
|
||||||
|
|
||||||
Open the `TensorFlowLite.tulsiproj` using the
|
Open the `//tensorflow/lite/experimental/swift/TensorFlowLite.tulsiproj` using
|
||||||
[TulsiApp](https://github.com/bazelbuild/tulsi)
|
the [TulsiApp](https://github.com/bazelbuild/tulsi)
|
||||||
or by running the
|
or by running the
|
||||||
[`generate_xcodeproj.sh`](https://github.com/bazelbuild/tulsi/blob/master/src/tools/generate_xcodeproj.sh)
|
[`generate_xcodeproj.sh`](https://github.com/bazelbuild/tulsi/blob/master/src/tools/generate_xcodeproj.sh)
|
||||||
script from the root `tensorflow` directory:
|
script from the root `tensorflow` directory:
|
||||||
@ -62,19 +78,3 @@ script from the root `tensorflow` directory:
|
|||||||
```shell
|
```shell
|
||||||
generate_xcodeproj.sh --genconfig tensorflow/lite/experimental/swift/TensorFlowLite.tulsiproj:TensorFlowLite --outputfolder ~/path/to/generated/TensorFlowLite.xcodeproj
|
generate_xcodeproj.sh --genconfig tensorflow/lite/experimental/swift/TensorFlowLite.tulsiproj:TensorFlowLite --outputfolder ~/path/to/generated/TensorFlowLite.xcodeproj
|
||||||
```
|
```
|
||||||
|
|
||||||
### CocoaPods
|
|
||||||
|
|
||||||
Add the following to your `Podfile`:
|
|
||||||
|
|
||||||
```ruby
|
|
||||||
pod 'TensorFlowLiteSwift'
|
|
||||||
```
|
|
||||||
|
|
||||||
Then, run `pod install`.
|
|
||||||
|
|
||||||
In your Swift files, import the module:
|
|
||||||
|
|
||||||
```swift
|
|
||||||
import TensorFlowLite
|
|
||||||
```
|
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
# Run `pod lib lint TensorFlowLiteSwift.podspec` to ensure this is a valid spec.
|
|
||||||
|
|
||||||
Pod::Spec.new do |s|
|
Pod::Spec.new do |s|
|
||||||
s.name = 'TensorFlowLiteSwift'
|
s.name = 'TensorFlowLiteSwift'
|
||||||
s.version = '0.2.0'
|
s.version = '0.2.0'
|
||||||
|
@ -30,12 +30,12 @@ To get started quickly writing your own iOS code, we recommend using our
|
|||||||
[Swift image classification example](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/ios)
|
[Swift image classification example](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/ios)
|
||||||
as a starting point.
|
as a starting point.
|
||||||
|
|
||||||
The sections below walk you through the steps for adding TensorFlow Lite Swift
|
The sections below demonstrate how to add TensorFlow Lite Swift or Objective-C
|
||||||
or Objective-C to your project:
|
to your project:
|
||||||
|
|
||||||
### CocoaPods developers
|
### CocoaPods developers
|
||||||
|
|
||||||
In your `Podfile`, add the TensorFlow Lite pod. Then, run `pod install`:
|
In your `Podfile`, add the TensorFlow Lite pod. Then, run `pod install`.
|
||||||
|
|
||||||
#### Swift
|
#### Swift
|
||||||
|
|
||||||
@ -52,7 +52,7 @@ pod 'TensorFlowLiteObjC'
|
|||||||
|
|
||||||
### Bazel developers
|
### Bazel developers
|
||||||
|
|
||||||
In your `BUILD` file, add the `TensorFlowLite` dependency.
|
In your `BUILD` file, add the `TensorFlowLite` dependency to your target.
|
||||||
|
|
||||||
#### Swift
|
#### Swift
|
||||||
|
|
||||||
@ -74,7 +74,7 @@ objc_library(
|
|||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
### Importing the library
|
### Import the library
|
||||||
|
|
||||||
For Swift files, import the TensorFlow Lite module:
|
For Swift files, import the TensorFlow Lite module:
|
||||||
|
|
||||||
@ -88,12 +88,11 @@ For Objective-C files, import the umbrella header:
|
|||||||
#import "TFLTensorFlowLite.h"
|
#import "TFLTensorFlowLite.h"
|
||||||
```
|
```
|
||||||
|
|
||||||
Or, the TensorFlow Lite module:
|
Or, the module if you set `CLANG_ENABLE_MODULES = YES` in your Xcode project:
|
||||||
|
|
||||||
```objectivec
|
```objectivec
|
||||||
@import TFLTensorFlowLite;
|
@import TFLTensorFlowLite;
|
||||||
```
|
```
|
||||||
|
|
||||||
Note: If importing the Objective-C TensorFlow Lite module, `CLANG_ENABLE_MODULES`
|
Note: For CocoaPods developers who want to import the Objective-C TensorFlow
|
||||||
must be set to `YES`. Additionally, for CocoaPods developers, `use_frameworks!`
|
Lite module, you must also include `use_frameworks!` in your `Podfile`.
|
||||||
must be specified in your `Podfile`.
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user