Update gather_op_test and unique_op_test to use subTest for easier debugging.

PiperOrigin-RevId: 311595699
Change-Id: I1a8cf8b5b314aada4aeeece2603e975bc8a4ff42
This commit is contained in:
Andrew Selle 2020-05-14 13:28:33 -07:00 committed by TensorFlower Gardener
parent 66769844a5
commit 6db3caf99b
2 changed files with 142 additions and 130 deletions

View File

@ -62,14 +62,15 @@ class GatherTest(test.TestCase, parameterized.TestCase):
data = np.array([0, 1, 2, 3, 7, 5]) data = np.array([0, 1, 2, 3, 7, 5])
for dtype in _TEST_TYPES: for dtype in _TEST_TYPES:
for indices in 4, [1, 2, 2, 4, 5]: for indices in 4, [1, 2, 2, 4, 5]:
params_np = self._buildParams(data, dtype) with self.subTest(dtype=dtype, indices=indices):
params = constant_op.constant(params_np) params_np = self._buildParams(data, dtype)
indices_tf = constant_op.constant(indices) params = constant_op.constant(params_np)
gather_t = array_ops.gather(params, indices_tf) indices_tf = constant_op.constant(indices)
gather_val = self.evaluate(gather_t) gather_t = array_ops.gather(params, indices_tf)
np_val = params_np[indices] gather_val = self.evaluate(gather_t)
self.assertAllEqual(np_val, gather_val) np_val = params_np[indices]
self.assertEqual(np_val.shape, gather_t.get_shape()) self.assertAllEqual(np_val, gather_val)
self.assertEqual(np_val.shape, gather_t.get_shape())
def testScalar2D(self): def testScalar2D(self):
with self.session(use_gpu=True): with self.session(use_gpu=True):
@ -77,14 +78,15 @@ class GatherTest(test.TestCase, parameterized.TestCase):
[9, 10, 11], [12, 13, 14]]) [9, 10, 11], [12, 13, 14]])
for dtype in _TEST_TYPES: for dtype in _TEST_TYPES:
for axis in range(data.ndim): for axis in range(data.ndim):
params_np = self._buildParams(data, dtype) with self.subTest(dtype=dtype, axis=axis):
params = constant_op.constant(params_np) params_np = self._buildParams(data, dtype)
indices = constant_op.constant(2) params = constant_op.constant(params_np)
gather_t = array_ops.gather(params, indices, axis=axis) indices = constant_op.constant(2)
gather_val = self.evaluate(gather_t) gather_t = array_ops.gather(params, indices, axis=axis)
self.assertAllEqual(np.take(params_np, 2, axis=axis), gather_val) gather_val = self.evaluate(gather_t)
expected_shape = data.shape[:axis] + data.shape[axis + 1:] self.assertAllEqual(np.take(params_np, 2, axis=axis), gather_val)
self.assertEqual(expected_shape, gather_t.get_shape()) expected_shape = data.shape[:axis] + data.shape[axis + 1:]
self.assertEqual(expected_shape, gather_t.get_shape())
def testSimpleTwoD32(self): def testSimpleTwoD32(self):
with self.session(use_gpu=True): with self.session(use_gpu=True):
@ -92,16 +94,17 @@ class GatherTest(test.TestCase, parameterized.TestCase):
[9, 10, 11], [12, 13, 14]]) [9, 10, 11], [12, 13, 14]])
for dtype in _TEST_TYPES: for dtype in _TEST_TYPES:
for axis in range(data.ndim): for axis in range(data.ndim):
params_np = self._buildParams(data, dtype) with self.subTest(dtype=dtype, axis=axis):
params = constant_op.constant(params_np) params_np = self._buildParams(data, dtype)
# The indices must be in bounds for any axis. params = constant_op.constant(params_np)
indices = constant_op.constant([0, 1, 0, 2]) # The indices must be in bounds for any axis.
gather_t = array_ops.gather(params, indices, axis=axis) indices = constant_op.constant([0, 1, 0, 2])
gather_val = self.evaluate(gather_t) gather_t = array_ops.gather(params, indices, axis=axis)
self.assertAllEqual(np.take(params_np, [0, 1, 0, 2], axis=axis), gather_val = self.evaluate(gather_t)
gather_val) self.assertAllEqual(np.take(params_np, [0, 1, 0, 2], axis=axis),
expected_shape = data.shape[:axis] + (4,) + data.shape[axis + 1:] gather_val)
self.assertEqual(expected_shape, gather_t.get_shape()) expected_shape = data.shape[:axis] + (4,) + data.shape[axis + 1:]
self.assertEqual(expected_shape, gather_t.get_shape())
@test_util.run_deprecated_v1 @test_util.run_deprecated_v1
def testHigherRank(self): def testHigherRank(self):
@ -112,58 +115,60 @@ class GatherTest(test.TestCase, parameterized.TestCase):
for axis in range(len(shape)): for axis in range(len(shape)):
params = self._buildParams(np.random.randn(*shape), dtype) params = self._buildParams(np.random.randn(*shape), dtype)
indices = np.random.randint(shape[axis], size=indices_shape) indices = np.random.randint(shape[axis], size=indices_shape)
with self.cached_session(use_gpu=True) as sess: with self.subTest(indices_shape=indices_shape, dtype=dtype, axis=axis,
tf_params = constant_op.constant(params) indices=indices):
tf_indices = constant_op.constant(indices) with self.cached_session(use_gpu=True) as sess:
# Check that both positive and negative indices for axis work. tf_params = constant_op.constant(params)
tf_axis = constant_op.constant(axis) tf_indices = constant_op.constant(indices)
tf_negative_axis = constant_op.constant(-len(shape) + axis) # Check that both positive and negative indices for axis work.
gather = array_ops.gather(tf_params, tf_indices, axis=tf_axis) tf_axis = constant_op.constant(axis)
gather_negative_axis = array_ops.gather( tf_negative_axis = constant_op.constant(-len(shape) + axis)
tf_params, tf_indices, axis=tf_negative_axis) gather = array_ops.gather(tf_params, tf_indices, axis=tf_axis)
gather_value, gather_negative_axis_value = sess.run( gather_negative_axis = array_ops.gather(
[gather, gather_negative_axis]) tf_params, tf_indices, axis=tf_negative_axis)
gather_np = np.take(params, indices, axis) gather_value, gather_negative_axis_value = sess.run(
self.assertAllEqual(gather_np, gather_value) [gather, gather_negative_axis])
self.assertAllEqual(gather_np, gather_negative_axis_value) gather_np = np.take(params, indices, axis)
expected_shape = (params.shape[:axis] + indices.shape + self.assertAllEqual(gather_np, gather_value)
params.shape[axis + 1:]) self.assertAllEqual(gather_np, gather_negative_axis_value)
self.assertEqual(expected_shape, gather.shape) expected_shape = (params.shape[:axis] + indices.shape +
self.assertEqual(expected_shape, gather_negative_axis.shape) params.shape[axis + 1:])
self.assertEqual(expected_shape, gather.shape)
self.assertEqual(expected_shape, gather_negative_axis.shape)
# Test gradients # Test gradients
gather_grad = np.random.randn( gather_grad = np.random.randn(
*gather.get_shape().as_list()).astype(dtype.as_numpy_dtype) *gather.get_shape().as_list()).astype(dtype.as_numpy_dtype)
if dtype.is_complex: if dtype.is_complex:
gather_grad -= 1j * gather_grad gather_grad -= 1j * gather_grad
params_grad, indices_grad, axis_grad = gradients_impl.gradients( params_grad, indices_grad, axis_grad = gradients_impl.gradients(
gather, [tf_params, tf_indices, tf_axis], gather_grad) gather, [tf_params, tf_indices, tf_axis], gather_grad)
self.assertEqual(indices_grad, None) self.assertEqual(indices_grad, None)
self.assertEqual(axis_grad, None) self.assertEqual(axis_grad, None)
if dtype.is_integer: if dtype.is_integer:
self.assertEqual(params_grad, None) self.assertEqual(params_grad, None)
continue continue
# For axis 0, we are able to create an efficient IndexedSlices for # For axis 0, we are able to create an efficient IndexedSlices for
# the gradient. # the gradient.
if axis == 0: if axis == 0:
self.assertEqual(type(params_grad), ops.IndexedSlices) self.assertEqual(type(params_grad), ops.IndexedSlices)
params_grad = ops.convert_to_tensor(params_grad) params_grad = ops.convert_to_tensor(params_grad)
correct_params_grad = np.zeros(shape).astype(dtype.as_numpy_dtype) correct_params_grad = np.zeros(shape).astype(dtype.as_numpy_dtype)
outer_dims = axis outer_dims = axis
inner_dims = len(shape) - axis - 1 inner_dims = len(shape) - axis - 1
gather_grad = gather_grad.reshape( gather_grad = gather_grad.reshape(
shape[:axis] + (indices.size,) + shape[axis + 1:]) shape[:axis] + (indices.size,) + shape[axis + 1:])
for source_index, dest_index in enumerate(indices.flat): for source_index, dest_index in enumerate(indices.flat):
dest_slice = ((slice(None),) * outer_dims + (dest_index,) + dest_slice = ((slice(None),) * outer_dims + (dest_index,) +
(slice(None),) * inner_dims)
source_slice = ((slice(None),) * outer_dims + (source_index,) +
(slice(None),) * inner_dims) (slice(None),) * inner_dims)
correct_params_grad[dest_slice] += gather_grad[source_slice] source_slice = ((slice(None),) * outer_dims + (source_index,) +
self.assertAllClose( (slice(None),) * inner_dims)
correct_params_grad, correct_params_grad[dest_slice] += gather_grad[source_slice]
self.evaluate(params_grad), self.assertAllClose(
atol=2e-6, correct_params_grad,
rtol=2e-6) self.evaluate(params_grad),
atol=2e-6,
rtol=2e-6)
@test_util.run_deprecated_v1 @test_util.run_deprecated_v1
def testString(self): def testString(self):
@ -177,12 +182,14 @@ class GatherTest(test.TestCase, parameterized.TestCase):
@test_util.run_deprecated_v1 @test_util.run_deprecated_v1
def testUInt32AndUInt64(self): def testUInt32AndUInt64(self):
for unsigned_type in (dtypes.uint32, dtypes.uint64): for unsigned_type in (dtypes.uint32, dtypes.uint64):
params = self._buildParams( with self.subTest(unsigned_type=unsigned_type):
np.array([[1, 2, 3], [7, 8, 9]]), unsigned_type) params = self._buildParams(
with self.cached_session(): np.array([[1, 2, 3], [7, 8, 9]]), unsigned_type)
self.assertAllEqual([7, 8, 9], with self.cached_session():
array_ops.gather(params, 1, axis=0).eval()) self.assertAllEqual([7, 8, 9],
self.assertAllEqual([1, 7], array_ops.gather(params, 0, axis=1).eval()) array_ops.gather(params, 1, axis=0).eval())
self.assertAllEqual([1, 7],
array_ops.gather(params, 0, axis=1).eval())
@test_util.run_deprecated_v1 @test_util.run_deprecated_v1
def testUnknownIndices(self): def testUnknownIndices(self):
@ -237,14 +244,15 @@ class GatherTest(test.TestCase, parameterized.TestCase):
indices = 0 indices = 0
for bad_axis in (1, 2, -2): for bad_axis in (1, 2, -2):
# Shape inference can validate axis for known params rank. # Shape inference can validate axis for known params rank.
with self.assertRaisesWithPredicateMatch( with self.subTest(bad_axis=bad_axis):
ValueError, "Shape must be at least rank . but is rank 1"): with self.assertRaisesWithPredicateMatch(
array_ops.gather(params, indices, axis=bad_axis) ValueError, "Shape must be at least rank . but is rank 1"):
# If params rank is unknown, an op error occurs. array_ops.gather(params, indices, axis=bad_axis)
with self.assertRaisesOpError( # If params rank is unknown, an op error occurs.
r"Expected axis in the range \[-1, 1\), but got %s" % bad_axis): with self.assertRaisesOpError(
array_ops.gather(params_ph, indices, axis=bad_axis).eval( r"Expected axis in the range \[-1, 1\), but got %s" % bad_axis):
feed_dict={params_ph: params}) array_ops.gather(params_ph, indices, axis=bad_axis).eval(
feed_dict={params_ph: params})
@test_util.run_deprecated_v1 @test_util.run_deprecated_v1
def testEmptySlices(self): def testEmptySlices(self):
@ -252,20 +260,21 @@ class GatherTest(test.TestCase, parameterized.TestCase):
for dtype in _TEST_TYPES: for dtype in _TEST_TYPES:
for itype in np.int32, np.int64: for itype in np.int32, np.int64:
# Leading axis gather. # Leading axis gather.
params = np.zeros((7, 0, 0), dtype=dtype.as_numpy_dtype) with self.subTest(dtype=dtype, itype=itype):
indices = np.array([3, 4], dtype=itype) params = np.zeros((7, 0, 0), dtype=dtype.as_numpy_dtype)
gather = array_ops.gather(params, indices, axis=0) indices = np.array([3, 4], dtype=itype)
self.assertAllEqual(gather.eval(), np.zeros((2, 0, 0))) gather = array_ops.gather(params, indices, axis=0)
self.assertAllEqual(gather.eval(), np.zeros((2, 0, 0)))
# Middle axis gather. # Middle axis gather.
params = np.zeros((0, 7, 0), dtype=dtype.as_numpy_dtype) params = np.zeros((0, 7, 0), dtype=dtype.as_numpy_dtype)
gather = array_ops.gather(params, indices, axis=1) gather = array_ops.gather(params, indices, axis=1)
self.assertAllEqual(gather.eval(), np.zeros((0, 2, 0))) self.assertAllEqual(gather.eval(), np.zeros((0, 2, 0)))
# Trailing axis gather. # Trailing axis gather.
params = np.zeros((0, 0, 7), dtype=dtype.as_numpy_dtype) params = np.zeros((0, 0, 7), dtype=dtype.as_numpy_dtype)
gather = array_ops.gather(params, indices, axis=2) gather = array_ops.gather(params, indices, axis=2)
self.assertAllEqual(gather.eval(), np.zeros((0, 0, 2))) self.assertAllEqual(gather.eval(), np.zeros((0, 0, 2)))
@parameterized.parameters([ @parameterized.parameters([
# batch_dims=0 (equivalent to tf.gather) # batch_dims=0 (equivalent to tf.gather)

View File

@ -61,17 +61,18 @@ class UniqueTest(test.TestCase):
def testInt32Axis(self): def testInt32Axis(self):
for dtype in [np.int32, np.int64]: for dtype in [np.int32, np.int64]:
x = np.array([[1, 0, 0], [1, 0, 0], [2, 0, 0]]) with self.subTest(dtype=dtype):
y0, idx0 = gen_array_ops.unique_v2(x, axis=np.array([0], dtype)) x = np.array([[1, 0, 0], [1, 0, 0], [2, 0, 0]])
self.assertEqual(y0.shape.rank, 2) y0, idx0 = gen_array_ops.unique_v2(x, axis=np.array([0], dtype))
tf_y0, tf_idx0 = self.evaluate([y0, idx0]) self.assertEqual(y0.shape.rank, 2)
y1, idx1 = gen_array_ops.unique_v2(x, axis=np.array([1], dtype)) tf_y0, tf_idx0 = self.evaluate([y0, idx0])
self.assertEqual(y1.shape.rank, 2) y1, idx1 = gen_array_ops.unique_v2(x, axis=np.array([1], dtype))
tf_y1, tf_idx1 = self.evaluate([y1, idx1]) self.assertEqual(y1.shape.rank, 2)
self.assertAllEqual(tf_y0, np.array([[1, 0, 0], [2, 0, 0]])) tf_y1, tf_idx1 = self.evaluate([y1, idx1])
self.assertAllEqual(tf_idx0, np.array([0, 0, 1])) self.assertAllEqual(tf_y0, np.array([[1, 0, 0], [2, 0, 0]]))
self.assertAllEqual(tf_y1, np.array([[1, 0], [1, 0], [2, 0]])) self.assertAllEqual(tf_idx0, np.array([0, 0, 1]))
self.assertAllEqual(tf_idx1, np.array([0, 1, 1])) self.assertAllEqual(tf_y1, np.array([[1, 0], [1, 0], [2, 0]]))
self.assertAllEqual(tf_idx1, np.array([0, 1, 1]))
def testInt32V2(self): def testInt32V2(self):
# This test is only temporary, once V2 is used # This test is only temporary, once V2 is used
@ -144,26 +145,28 @@ class UniqueWithCountsTest(test.TestCase):
for i in range(len(x)): for i in range(len(x)):
self.assertEqual(x[i], tf_y[tf_idx[i]].decode('ascii')) self.assertEqual(x[i], tf_y[tf_idx[i]].decode('ascii'))
for value, count in zip(tf_y, tf_count): for value, count in zip(tf_y, tf_count):
v = [1 if x[i] == value.decode('ascii') else 0 for i in range(7000)] with self.subTest(value=value, count=count):
self.assertEqual(count, sum(v)) v = [1 if x[i] == value.decode('ascii') else 0 for i in range(7000)]
self.assertEqual(count, sum(v))
def testInt32Axis(self): def testInt32Axis(self):
for dtype in [np.int32, np.int64]: for dtype in [np.int32, np.int64]:
x = np.array([[1, 0, 0], [1, 0, 0], [2, 0, 0]]) with self.subTest(dtype=dtype):
y0, idx0, count0 = gen_array_ops.unique_with_counts_v2( x = np.array([[1, 0, 0], [1, 0, 0], [2, 0, 0]])
x, axis=np.array([0], dtype)) y0, idx0, count0 = gen_array_ops.unique_with_counts_v2(
self.assertEqual(y0.shape.rank, 2) x, axis=np.array([0], dtype))
tf_y0, tf_idx0, tf_count0 = self.evaluate([y0, idx0, count0]) self.assertEqual(y0.shape.rank, 2)
y1, idx1, count1 = gen_array_ops.unique_with_counts_v2( tf_y0, tf_idx0, tf_count0 = self.evaluate([y0, idx0, count0])
x, axis=np.array([1], dtype)) y1, idx1, count1 = gen_array_ops.unique_with_counts_v2(
self.assertEqual(y1.shape.rank, 2) x, axis=np.array([1], dtype))
tf_y1, tf_idx1, tf_count1 = self.evaluate([y1, idx1, count1]) self.assertEqual(y1.shape.rank, 2)
self.assertAllEqual(tf_y0, np.array([[1, 0, 0], [2, 0, 0]])) tf_y1, tf_idx1, tf_count1 = self.evaluate([y1, idx1, count1])
self.assertAllEqual(tf_idx0, np.array([0, 0, 1])) self.assertAllEqual(tf_y0, np.array([[1, 0, 0], [2, 0, 0]]))
self.assertAllEqual(tf_count0, np.array([2, 1])) self.assertAllEqual(tf_idx0, np.array([0, 0, 1]))
self.assertAllEqual(tf_y1, np.array([[1, 0], [1, 0], [2, 0]])) self.assertAllEqual(tf_count0, np.array([2, 1]))
self.assertAllEqual(tf_idx1, np.array([0, 1, 1])) self.assertAllEqual(tf_y1, np.array([[1, 0], [1, 0], [2, 0]]))
self.assertAllEqual(tf_count1, np.array([1, 2])) self.assertAllEqual(tf_idx1, np.array([0, 1, 1]))
self.assertAllEqual(tf_count1, np.array([1, 2]))
def testInt32V2(self): def testInt32V2(self):
# This test is only temporary, once V2 is used # This test is only temporary, once V2 is used