diff --git a/tensorflow/compiler/mlir/tensorflow/ir/tf_generated_ops.td b/tensorflow/compiler/mlir/tensorflow/ir/tf_generated_ops.td index dcef99e6971..1e5dad345f8 100644 --- a/tensorflow/compiler/mlir/tensorflow/ir/tf_generated_ops.td +++ b/tensorflow/compiler/mlir/tensorflow/ir/tf_generated_ops.td @@ -52,9 +52,6 @@ an output element, this operation computes \\(y = |x|\\). def TF_AcosOp : TF_Op<"Acos", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Computes acos of x element-wise."; - let description = [{ - }]; - let arguments = (ins TensorOf<[BF16, F16, F32, F64, I32, I64, TF_Complex128, TF_Complex64]>:$x ); @@ -371,9 +368,6 @@ retained with length 1. def TF_ApproximateEqualOp : TF_Op<"ApproximateEqual", [Commutative, NoSideEffect]> { let summary = "Returns the truth value of abs(x-y) < tolerance element-wise."; - let description = [{ - }]; - let arguments = (ins TensorOf<[BF16, F16, F32, F64, I16, I32, I64, I8, TF_Complex128, TF_Complex64, TF_Qint32, TF_Qint8, TF_Quint8, TF_Uint16, TF_Uint32, TF_Uint64, TF_Uint8]>:$x, TensorOf<[BF16, F16, F32, F64, I16, I32, I64, I8, TF_Complex128, TF_Complex64, TF_Qint32, TF_Qint8, TF_Quint8, TF_Uint16, TF_Uint32, TF_Uint64, TF_Uint8]>:$y, @@ -734,9 +728,6 @@ window in `value`. def TF_AvgPoolGradOp : TF_Op<"AvgPoolGrad", [NoSideEffect]> { let summary = "Computes gradients of the average pooling function."; - let description = [{ - }]; - let arguments = (ins I32Tensor:$orig_input_shape, TF_FpTensor:$grad, @@ -1402,9 +1393,6 @@ An n-way switch statement, implementing the following: def TF_CastOp : TF_Op<"Cast", [NoSideEffect, SameOperandsAndResultShape]> { let summary = "Cast x of type SrcT to y of DstT."; - let description = [{ - }]; - let arguments = (ins TF_Tensor:$x, @@ -1424,9 +1412,6 @@ def TF_CastOp : TF_Op<"Cast", [NoSideEffect, SameOperandsAndResultShape]> { def TF_CeilOp : TF_Op<"Ceil", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Returns element-wise smallest integer not less than x."; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$x ); @@ -1485,9 +1470,6 @@ greater than `clip_value_max` are set to `clip_value_max`. def TF_CollectiveBcastRecvOp : TF_Op<"CollectiveBcastRecv", []> { let summary = "Receives a tensor value broadcast from another device."; - let description = [{ - }]; - let arguments = (ins I64Attr:$group_size, I64Attr:$group_key, @@ -1507,9 +1489,6 @@ def TF_CollectiveBcastRecvOp : TF_Op<"CollectiveBcastRecv", []> { def TF_CollectiveBcastSendOp : TF_Op<"CollectiveBcastSend", []> { let summary = "Broadcasts a tensor value to one or more other devices."; - let description = [{ - }]; - let arguments = (ins TensorOf<[F16, F32, F64, I1, I32, I64]>:$input, @@ -1533,9 +1512,6 @@ def TF_CollectiveGatherOp : TF_Op<"CollectiveGather", []> { Mutually accumulates multiple tensors of identical type and shape. }]; - let description = [{ - }]; - let arguments = (ins TensorOf<[F16, F32, F64, I32, I64]>:$input, @@ -1559,9 +1535,6 @@ def TF_CollectiveReduceOp : TF_Op<"CollectiveReduce", [SameOperandsAndResultType Mutually reduces multiple tensors of identical type and shape. }]; - let description = [{ - }]; - let arguments = (ins TensorOf<[F16, F32, F64, I32, I64]>:$input, @@ -1641,9 +1614,6 @@ value is computed as \\( \sqrt{a^2 + b^2}\\). def TF_ConcatOp : TF_Op<"Concat", [NoSideEffect]> { let summary = "Concatenates tensors along one dimension."; - let description = [{ - }]; - let arguments = (ins I32Tensor:$concat_dim, Variadic:$values @@ -1700,9 +1670,6 @@ This is typically used by gradient computations for a concat operation. def TF_ConcatV2Op : TF_Op<"ConcatV2", [NoSideEffect]> { let summary = "Concatenates tensors along one dimension."; - let description = [{ - }]; - let arguments = (ins Variadic:$values, TF_I32OrI64Tensor:$axis @@ -1842,9 +1809,6 @@ def TF_Conv2DBackpropFilterOp : TF_Op<"Conv2DBackpropFilter", [NoSideEffect, TF_ Computes the gradients of convolution with respect to the filter. }]; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$input, I32Tensor:$filter_sizes, @@ -1878,9 +1842,6 @@ def TF_Conv2DBackpropInputOp : TF_Op<"Conv2DBackpropInput", [NoSideEffect, TF_La Computes the gradients of convolution with respect to the input. }]; - let description = [{ - }]; - let arguments = (ins I32Tensor:$input_sizes, TensorOf<[BF16, F16, F32, F64, I32]>:$filter, @@ -1952,9 +1913,6 @@ def TF_Conv3DBackpropFilterV2Op : TF_Op<"Conv3DBackpropFilterV2", [NoSideEffect] Computes the gradients of 3-D convolution with respect to the filter. }]; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$input, I32Tensor:$filter_sizes, @@ -1978,9 +1936,6 @@ def TF_Conv3DBackpropInputV2Op : TF_Op<"Conv3DBackpropInputV2", [NoSideEffect]> Computes the gradients of 3-D convolution with respect to the input. }]; - let description = [{ - }]; - let arguments = (ins TF_I32OrI64Tensor:$input_sizes, TF_FpTensor:$filter, @@ -2465,9 +2420,6 @@ horizontal and vertices strides, `strides = [1, stride, stride, 1]`. def TF_DeviceIndexOp : TF_Op<"DeviceIndex", [NoSideEffect]> { let summary = "Return the index of device the op runs."; - let description = [{ - }]; - let arguments = (ins StrArrayAttr:$device_names ); @@ -2792,9 +2744,6 @@ def TF_EluGradOp : TF_Op<"EluGrad", [NoSideEffect, SameOperandsAndResultType]> { Computes gradients for the exponential linear (Elu) operation. }]; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$gradients, TF_FpTensor:$outputs @@ -2814,9 +2763,6 @@ Creates a tensor with the given shape. This operation creates a tensor of `shape` and `dtype`. }]; - let description = [{ - }]; - let arguments = (ins I32Tensor:$shape, @@ -2946,9 +2892,6 @@ tf.math.equal(x, y) ==> array([True, True]) def TF_ErfOp : TF_Op<"Erf", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Computes the Gauss error function of `x` element-wise."; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$x ); @@ -2965,9 +2908,6 @@ def TF_ErfcOp : TF_Op<"Erfc", [NoSideEffect, SameOperandsAndResultType]> { Computes the complementary error function of `x` element-wise. }]; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$x ); @@ -2982,9 +2922,6 @@ Computes the complementary error function of `x` element-wise. def TF_ErfinvOp : TF_Op<"Erfinv", [NoSideEffect]> { let summary = ""; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$x ); @@ -3190,9 +3127,6 @@ def TF_FakeParamOp : TF_Op<"FakeParam", [NoSideEffect]> { intermediate output needed for the gradient computation of the other branch). }]; - let description = [{ - }]; - let arguments = (ins TF_ShapeAttr:$shape ); @@ -3402,9 +3336,6 @@ fill([2, 3], 9) ==> [[9, 9, 9] def TF_FloorOp : TF_Op<"Floor", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Returns element-wise largest integer not greater than x."; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$x ); @@ -4212,9 +4143,6 @@ def TF_IgammaGradAOp : TF_Op<"IgammaGradA", [NoSideEffect, ResultsBroadcastableS WithBroadcastableBinOpBuilder { let summary = "Computes the gradient of `igamma(a, x)` wrt `a`."; - let description = [{ - }]; - let arguments = (ins TF_F32OrF64Tensor:$a, TF_F32OrF64Tensor:$x @@ -4487,9 +4415,6 @@ tf.math.is_nan(x) ==> [False, True, False, True, False] def TF_IteratorGetNextOp : TF_Op<"IteratorGetNext", []> { let summary = "Gets the next output from the given iterator ."; - let description = [{ - }]; - let arguments = (ins TF_ResourceTensor:$iterator ); @@ -4558,9 +4483,6 @@ convolutional neural networks (NIPS 2012)](http://papers.nips.cc/paper/4824-imag def TF_LRNGradOp : TF_Op<"LRNGrad", [NoSideEffect]> { let summary = "Gradients for Local Response Normalization."; - let description = [{ - }]; - let arguments = (ins TensorOf<[BF16, F16, F32]>:$input_grads, TensorOf<[BF16, F16, F32]>:$input_image, @@ -4582,9 +4504,6 @@ def TF_LRNGradOp : TF_Op<"LRNGrad", [NoSideEffect]> { def TF_LeakyReluOp : TF_Op<"LeakyRelu", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Computes rectified linear: `max(features, features * alpha)`."; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$features, @@ -4605,9 +4524,6 @@ def TF_LeakyReluGradOp : TF_Op<"LeakyReluGrad", [NoSideEffect, SameOperandsAndRe Computes rectified linear gradients for a LeakyRelu operation. }]; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$gradients, TF_FpTensor:$features, @@ -4888,9 +4804,6 @@ def TF_LogicalAndOp : TF_Op<"LogicalAnd", [Commutative, NoSideEffect, ResultsBro def TF_LogicalNotOp : TF_Op<"LogicalNot", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Returns the truth value of `NOT x` element-wise."; - let description = [{ - }]; - let arguments = (ins I1Tensor:$x ); @@ -4971,9 +4884,6 @@ The tensor `values` must be of the type of the table values. def TF_LookupTableSizeV2Op : TF_Op<"LookupTableSizeV2", []> { let summary = "Computes the number of elements in the given table."; - let description = [{ - }]; - let arguments = (ins TF_ResourceTensor:$table_handle ); @@ -5658,9 +5568,6 @@ retained with length 1. def TF_MaxPoolOp : TF_Op<"MaxPool", [NoSideEffect, TF_FoldOperandsTransposeInterface]> { let summary = "Performs max pooling on the input."; - let description = [{ - }]; - let arguments = (ins TensorOf<[BF16, F16, F32, F64, I16, I32, I64, I8, TF_Qint8, TF_Uint16, TF_Uint8]>:$input, @@ -5687,9 +5594,6 @@ def TF_MaxPoolOp : TF_Op<"MaxPool", [NoSideEffect, TF_FoldOperandsTransposeInter def TF_MaxPool3DOp : TF_Op<"MaxPool3D", [NoSideEffect]> { let summary = "Performs 3D max pooling on the input."; - let description = [{ - }]; - let arguments = (ins TensorOf<[BF16, F16, F32]>:$input, @@ -5709,9 +5613,6 @@ def TF_MaxPool3DOp : TF_Op<"MaxPool3D", [NoSideEffect]> { def TF_MaxPool3DGradOp : TF_Op<"MaxPool3DGrad", [NoSideEffect]> { let summary = "Computes gradients of 3D max pooling function."; - let description = [{ - }]; - let arguments = (ins TensorOf<[BF16, F16, F32]>:$orig_input, TensorOf<[BF16, F16, F32]>:$orig_output, @@ -5734,9 +5635,6 @@ def TF_MaxPool3DGradOp : TF_Op<"MaxPool3DGrad", [NoSideEffect]> { def TF_MaxPoolGradOp : TF_Op<"MaxPoolGrad", [NoSideEffect]> { let summary = "Computes gradients of the maxpooling function."; - let description = [{ - }]; - let arguments = (ins TF_IntOrFpTensor:$orig_input, TF_IntOrFpTensor:$orig_output, @@ -6015,9 +5913,6 @@ Returns x * y element-wise. Returns zero if y is zero, even if x if infinite or def TF_MultinomialOp : TF_Op<"Multinomial", []> { let summary = "Draws samples from a multinomial distribution."; - let description = [{ - }]; - let arguments = (ins TF_IntOrFpTensor:$logits, I32Tensor:$num_samples, @@ -6037,9 +5932,6 @@ def TF_MultinomialOp : TF_Op<"Multinomial", []> { def TF_NdtriOp : TF_Op<"Ndtri", [NoSideEffect]> { let summary = ""; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$x ); @@ -6074,9 +5966,6 @@ I.e., \\(y = -x\\). def TF_NoOp : TF_Op<"NoOp", [NoSideEffect]> { let summary = "Does nothing. Only useful as a placeholder for control edges."; - let description = [{ - }]; - let arguments = (ins); let results = (outs); @@ -6330,9 +6219,6 @@ output = def TF_OutfeedEnqueueTupleOp : TF_Op<"OutfeedEnqueueTuple", []> { let summary = "Enqueue multiple Tensor values on the computation outfeed."; - let description = [{ - }]; - let arguments = (ins Variadic:$inputs ); @@ -6617,9 +6503,6 @@ q_full, r_full = qr(a, full_matrices=True) def TF_QuantizeAndDequantizeOp : TF_Op<"QuantizeAndDequantize", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Use QuantizeAndDequantizeV2 instead."; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$input, @@ -6871,9 +6754,6 @@ def TF_RandomGammaGradOp : TF_Op<"RandomGammaGrad", [NoSideEffect, ResultsBroadc Computes the derivative of a Gamma random sample w.r.t. `alpha`. }]; - let description = [{ - }]; - let arguments = (ins TF_F32OrF64Tensor:$alpha, TF_F32OrF64Tensor:$sample @@ -7203,9 +7083,6 @@ array([ 0., 0., -0., 3.], dtype=float32) def TF_Relu6Op : TF_Op<"Relu6", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Computes rectified linear 6: `min(max(features, 0), 6)`."; - let description = [{ - }]; - let arguments = (ins TF_IntOrFpTensor:$features ); @@ -7220,9 +7097,6 @@ def TF_Relu6Op : TF_Op<"Relu6", [NoSideEffect, SameOperandsAndResultType]> { def TF_Relu6GradOp : TF_Op<"Relu6Grad", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Computes rectified linear 6 gradients for a Relu6 operation."; - let description = [{ - }]; - let arguments = (ins TF_IntOrFpTensor:$gradients, TF_IntOrFpTensor:$features @@ -7238,9 +7112,6 @@ def TF_Relu6GradOp : TF_Op<"Relu6Grad", [NoSideEffect, SameOperandsAndResultType def TF_ReluGradOp : TF_Op<"ReluGrad", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Computes rectified linear gradients for a Relu operation."; - let description = [{ - }]; - let arguments = (ins TF_IntOrFpTensor:$gradients, TF_IntOrFpTensor:$features @@ -7365,9 +7236,6 @@ Input images can be of different types but output images are always float. def TF_ResizeBilinearGradOp : TF_Op<"ResizeBilinearGrad", [NoSideEffect]> { let summary = "Computes the gradient of bilinear interpolation."; - let description = [{ - }]; - let arguments = (ins F32Tensor:$grads, TF_FpTensor:$original_image, @@ -7388,9 +7256,6 @@ def TF_ResizeNearestNeighborOp : TF_Op<"ResizeNearestNeighbor", [NoSideEffect]> Resize `images` to `size` using nearest neighbor interpolation. }]; - let description = [{ - }]; - let arguments = (ins TensorOf<[BF16, F16, F32, F64, I16, I32, I64, I8, TF_Uint16, TF_Uint8]>:$images, I32Tensor:$size, @@ -7507,9 +7372,6 @@ var <- var - mom def TF_ResourceApplyGradientDescentOp : TF_Op<"ResourceApplyGradientDescent", []> { let summary = "Update '*var' by subtracting 'alpha' * 'delta' from it."; - let description = [{ - }]; - let arguments = (ins TF_ResourceTensor:$var, TensorOf<[BF16, F16, F32, F64, I16, I32, I64, I8, TF_Complex128, TF_Complex64, TF_Qint32, TF_Qint8, TF_Quint8, TF_Uint16, TF_Uint32, TF_Uint64, TF_Uint8]>:$alpha, @@ -8292,9 +8154,6 @@ select(condition, t, e) ==> [[1, 2], def TF_SelectV2Op : TF_Op<"SelectV2", [NoSideEffect, ResultsBroadcastableShape]> { let summary = ""; - let description = [{ - }]; - let arguments = (ins I1Tensor:$condition, TF_Tensor:$t, @@ -8343,9 +8202,6 @@ def TF_SeluGradOp : TF_Op<"SeluGrad", [NoSideEffect, SameOperandsAndResultType]> Computes gradients for the scaled exponential linear (Selu) operation. }]; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$gradients, TF_FpTensor:$outputs @@ -8596,9 +8452,6 @@ whose values are extracted from 'input' starting at the offsets in def TF_SnapshotOp : TF_Op<"Snapshot", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Returns a copy of the input tensor."; - let description = [{ - }]; - let arguments = (ins TF_Tensor:$input ); @@ -8663,9 +8516,6 @@ Inputs are the logits, not probabilities. def TF_SoftplusOp : TF_Op<"Softplus", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Computes softplus: `log(exp(features) + 1)`."; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$features ); @@ -8680,9 +8530,6 @@ def TF_SoftplusOp : TF_Op<"Softplus", [NoSideEffect, SameOperandsAndResultType]> def TF_SoftplusGradOp : TF_Op<"SoftplusGrad", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Computes softplus gradients for a softplus operation."; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$gradients, TF_FpTensor:$features @@ -8698,9 +8545,6 @@ def TF_SoftplusGradOp : TF_Op<"SoftplusGrad", [NoSideEffect, SameOperandsAndResu def TF_SoftsignOp : TF_Op<"Softsign", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Computes softsign: `features / (abs(features) + 1)`."; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$features ); @@ -8715,9 +8559,6 @@ def TF_SoftsignOp : TF_Op<"Softsign", [NoSideEffect, SameOperandsAndResultType]> def TF_SoftsignGradOp : TF_Op<"SoftsignGrad", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Computes softsign gradients for a softsign operation."; - let description = [{ - }]; - let arguments = (ins TF_FpTensor:$gradients, TF_FpTensor:$features @@ -8965,9 +8806,6 @@ are checked during execution. def TF_SplitOp : TF_Op<"Split", [NoSideEffect]> { let summary = "Splits a tensor into `num_split` tensors along one dimension."; - let description = [{ - }]; - let arguments = (ins I32Tensor:$split_dim, TF_Tensor:$value @@ -8986,9 +8824,6 @@ def TF_SplitOp : TF_Op<"Split", [NoSideEffect]> { def TF_SplitVOp : TF_Op<"SplitV", [NoSideEffect]> { let summary = "Splits a tensor into `num_split` tensors along one dimension."; - let description = [{ - }]; - let arguments = (ins TF_Tensor:$value, TF_I32OrI64Tensor:$size_splits, @@ -9052,11 +8887,11 @@ I.e., \\(y = x * x = x^2\\). }]; let arguments = (ins - TensorOf<[BF16, F16, F32, F64, I32, I64, TF_Complex128, TF_Complex64]>:$x + TensorOf<[BF16, F16, F32, F64, I16, I32, I64, I8, TF_Complex128, TF_Complex64]>:$x ); let results = (outs - TensorOf<[BF16, F16, F32, F64, I32, I64, TF_Complex128, TF_Complex64]>:$y + TensorOf<[BF16, F16, F32, F64, I16, I32, I64, I8, TF_Complex128, TF_Complex64]>:$y ); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>; @@ -9125,9 +8960,6 @@ shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1] def TF_StackCloseV2Op : TF_Op<"StackCloseV2", []> { let summary = "Delete the stack from its resource container."; - let description = [{ - }]; - let arguments = (ins TF_ResourceTensor:$handle ); @@ -9138,9 +8970,6 @@ def TF_StackCloseV2Op : TF_Op<"StackCloseV2", []> { def TF_StackPopV2Op : TF_Op<"StackPopV2", []> { let summary = "Pop the element at the top of the stack."; - let description = [{ - }]; - let arguments = (ins TF_ResourceTensor:$handle ); @@ -9155,9 +8984,6 @@ def TF_StackPopV2Op : TF_Op<"StackPopV2", []> { def TF_StackPushV2Op : TF_Op<"StackPushV2", []> { let summary = "Push an element onto the stack."; - let description = [{ - }]; - let arguments = (ins TF_ResourceTensor:$handle, TF_Tensor:$elem, @@ -9175,9 +9001,6 @@ def TF_StackPushV2Op : TF_Op<"StackPushV2", []> { def TF_StackV2Op : TF_Op<"StackV2", []> { let summary = "A stack that produces elements in first-in last-out order."; - let description = [{ - }]; - let arguments = (ins I32Tensor:$max_size, @@ -9895,9 +9718,6 @@ calculation gets its own TensorArray accumulator. def TF_TensorArrayReadV3Op : TF_Op<"TensorArrayReadV3", []> { let summary = "Read an element from the TensorArray into output `value`."; - let description = [{ - }]; - let arguments = (ins TF_ResourceTensor:$handle, I32Tensor:$index, @@ -9937,9 +9757,6 @@ Scatter the data from the input value into specific TensorArray elements. def TF_TensorArraySizeV3Op : TF_Op<"TensorArraySizeV3", []> { let summary = "Get the current size of the TensorArray."; - let description = [{ - }]; - let arguments = (ins TF_ResourceTensor:$handle, F32Tensor:$flow_in @@ -10016,9 +9833,6 @@ Write data via Write and read via Read or Pack. def TF_TensorArrayWriteV3Op : TF_Op<"TensorArrayWriteV3", []> { let summary = "Push an element onto the tensor_array."; - let description = [{ - }]; - let arguments = (ins TF_ResourceTensor:$handle, I32Tensor:$index, @@ -10139,9 +9953,6 @@ values: The tensor. def TF_TensorListGetItemOp : TF_Op<"TensorListGetItem", [NoSideEffect]> { let summary = ""; - let description = [{ - }]; - let arguments = (ins TF_VariantTensor:$input_handle, I32Tensor:$index, @@ -10271,9 +10082,6 @@ output_handle: The TensorList. def TF_TensorListSetItemOp : TF_Op<"TensorListSetItem", [NoSideEffect]> { let summary = ""; - let description = [{ - }]; - let arguments = (ins TF_VariantTensor:$input_handle, I32Tensor:$index, @@ -11063,9 +10871,6 @@ def TF_XdivyOp : TF_Op<"Xdivy", [NoSideEffect, ResultsBroadcastableShape]>, WithBroadcastableBinOpBuilder { let summary = "Returns 0 if x == 0, and x / y otherwise, elementwise."; - let description = [{ - }]; - let arguments = (ins TensorOf<[F16, F32, F64, TF_Complex128, TF_Complex64]>:$x, TensorOf<[F16, F32, F64, TF_Complex128, TF_Complex64]>:$y @@ -11242,9 +11047,6 @@ def TF_XlaHostComputeOp : TF_Op<"XlaHostCompute", []> { A pseudo-op to represent host-side computation in an XLA program. }]; - let description = [{ - }]; - let arguments = (ins Variadic:$inputs, @@ -11315,9 +11117,6 @@ https://www.tensorflow.org/performance/xla/operation_semantics#pad def TF_XlaRecvFromHostOp : TF_Op<"XlaRecvFromHost", []> { let summary = "An op to receive a tensor from the host."; - let description = [{ - }]; - let arguments = (ins TF_ShapeAttr:$shape, StrAttr:$key @@ -11355,9 +11154,6 @@ https://www.tensorflow.org/performance/xla/operation_semantics#reduce . def TF_XlaReplicaIdOp : TF_Op<"XlaReplicaId", [NoSideEffect]> { let summary = "Replica ID."; - let description = [{ - }]; - let arguments = (ins); let results = (outs @@ -11397,9 +11193,6 @@ i=0...N-1. def TF_XlaSendToHostOp : TF_Op<"XlaSendToHost", []> { let summary = "An op to send a tensor to the host."; - let description = [{ - }]; - let arguments = (ins TF_Tensor:$input, @@ -11443,9 +11236,6 @@ tensor such that tensor[...,:,:] = u[..., :, :] * Diag(s[..., :]) * Transpose(v[ def TF_Xlog1pyOp : TF_Op<"Xlog1py", [NoSideEffect]> { let summary = "Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise."; - let description = [{ - }]; - let arguments = (ins TensorOf<[F16, F32, F64, TF_Complex128, TF_Complex64]>:$x, TensorOf<[F16, F32, F64, TF_Complex128, TF_Complex64]>:$y @@ -11462,9 +11252,6 @@ def TF_XlogyOp : TF_Op<"Xlogy", [NoSideEffect, ResultsBroadcastableShape]>, WithBroadcastableBinOpBuilder { let summary = "Returns 0 if x == 0, and x * log(y) otherwise, elementwise."; - let description = [{ - }]; - let arguments = (ins TensorOf<[F16, F32, F64, TF_Complex128, TF_Complex64]>:$x, TensorOf<[F16, F32, F64, TF_Complex128, TF_Complex64]>:$y @@ -11480,9 +11267,6 @@ def TF_XlogyOp : TF_Op<"Xlogy", [NoSideEffect, ResultsBroadcastableShape]>, def TF_ZerosLikeOp : TF_Op<"ZerosLike", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Returns a tensor of zeros with the same shape and type as x."; - let description = [{ - }]; - let arguments = (ins TF_Tensor:$x ); @@ -11589,9 +11373,6 @@ expected to create these operators. def TF__HostComputeMlirOp : TF_Op<"_HostComputeMlir", []> { let summary = "A host-side computation called from a TPU device."; - let description = [{ - }]; - let arguments = (ins Variadic:$inputs, @@ -11671,9 +11452,6 @@ def TF__XlaRecvAtHostOp : TF_Op<"_XlaRecvAtHost", []> { A placeholder op to receive values from a running XLA computation. }]; - let description = [{ - }]; - let arguments = (ins TF_StrTensor:$dynamic_key, @@ -11691,9 +11469,6 @@ A placeholder op to receive values from a running XLA computation. def TF__XlaSendFromHostOp : TF_Op<"_XlaSendFromHost", []> { let summary = "A placeholder op to send values to a running XLA computation."; - let description = [{ - }]; - let arguments = (ins Variadic:$inputs, TF_StrTensor:$dynamic_key, diff --git a/tensorflow/compiler/mlir/tensorflow/ir/tf_ops.td b/tensorflow/compiler/mlir/tensorflow/ir/tf_ops.td index d8675bb786f..24e88b0e966 100644 --- a/tensorflow/compiler/mlir/tensorflow/ir/tf_ops.td +++ b/tensorflow/compiler/mlir/tensorflow/ir/tf_ops.td @@ -232,6 +232,7 @@ else_branch: A function that takes 'inputs' and returns a list of def TF_YieldOp : TF_Op<"Yield", [Terminator]> { let summary = "Yield operation"; + let description = [{ The "yield" operation represents a return operation within the conditional and body of structured control flow (e.g., if and while). The operation @@ -497,6 +498,7 @@ Inserts a placeholder for a tensor that will be always fed. def TF_PlaceholderWithDefaultOp : TF_Op<"PlaceholderWithDefault", [NoSideEffect]> { let summary = "Placeholder op"; + let description = [{ A placeholder op that passes through input when its output is not fed. }]; @@ -839,9 +841,6 @@ def TF_XlaShardingOp : TF_Op<"XlaSharding", [NoSideEffect]> { An op which shards the input based on the given sharding attribute. }]; - let description = [{ - }]; - let arguments = (ins TF_Tensor:$input, @@ -858,9 +857,6 @@ An op which shards the input based on the given sharding attribute. def TF_InfeedDequeueTupleOp : TF_Op<"InfeedDequeueTuple", []> { let summary = "Fetches multiple values from infeed as an XLA tuple."; - let description = [{ - }]; - let arguments = (ins OptionalAttr:$_XlaSharding ); @@ -904,9 +900,6 @@ def TF_BatchDatasetV2Op : TF_Op<"BatchDatasetV2", [NoSideEffect]> { Creates a dataset that batches `batch_size` elements from `input_dataset`. }]; - let description = [{ - }]; - let arguments = (ins TF_VariantTensor:$input_dataset, I64Tensor:$batch_size,