Removing run_v1_decorators for slice_op_test. Also moving it to kernel_tests/array_ops folder.

PiperOrigin-RevId: 324161756
Change-Id: Ia5b42728f67b4230b0bf50332d5d9adaceeb5b0e
This commit is contained in:
Rohan Jain 2020-07-31 00:03:01 -07:00 committed by TensorFlower Gardener
parent 10e4287d61
commit 6be7a14b65
3 changed files with 168 additions and 94 deletions

View File

@ -3070,21 +3070,6 @@ cuda_py_test(
],
)
cuda_py_test(
name = "slice_op_test",
size = "medium",
srcs = ["slice_op_test.py"],
tags = ["no_windows"], # b/126916429
deps = [
"//tensorflow/python:array_ops",
"//tensorflow/python:client_testlib",
"//tensorflow/python:errors",
"//tensorflow/python:framework_for_generated_wrappers",
"//tensorflow/python:gradients",
"//third_party/py/numpy",
],
)
cuda_py_test(
name = "huge_slice_op_test",
size = "medium",

View File

@ -26,7 +26,24 @@ cuda_py_test(
deps = [
"//tensorflow/python:array_ops",
"//tensorflow/python:client_testlib",
"//tensorflow/python:errors",
"//tensorflow/python:framework_for_generated_wrappers",
"//tensorflow/python:gradients",
"//third_party/py/numpy",
],
)
cuda_py_test(
name = "slice_op_test",
size = "medium",
srcs = ["slice_op_test.py"],
tags = ["no_windows"], # b/126916429
deps = [
"//tensorflow/python:array_ops",
"//tensorflow/python:client_testlib",
"//tensorflow/python:errors",
"//tensorflow/python:framework_for_generated_wrappers",
"//tensorflow/python:gradients",
"//third_party/py/numpy",
],
)

View File

@ -21,9 +21,12 @@ from __future__ import print_function
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
from tensorflow.python.eager import backprop
from tensorflow.python.eager import def_function
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gradients_impl
@ -178,43 +181,44 @@ class SliceTest(test.TestCase):
]
self.assertAllClose(expected, result.flatten(), rtol=1e-6)
@test_util.run_deprecated_v1
def testScalarInput(self):
input_val = 0
with self.cached_session() as sess:
# Test with constant input; shape inference fails.
with self.assertRaisesWithPredicateMatch(ValueError, "out of range"):
constant_op.constant(input_val)[:].get_shape()
# Test with constant input; shape inference fails.
with self.assertRaisesWithPredicateMatch(
(ValueError, errors_impl.InvalidArgumentError), "out of range"):
constant_op.constant(input_val)[:].get_shape()
# Test evaluating with non-constant input; kernel execution fails.
input_t = array_ops.placeholder(dtypes.int32)
# Test evaluating with non-constant input; kernel execution fails.
@def_function.function
def func(input_t):
slice_t = input_t[:]
with self.assertRaisesWithPredicateMatch(errors_impl.InvalidArgumentError,
"out of range"):
sess.run([slice_t], feed_dict={input_t: input_val})
return slice_t
with self.assertRaisesWithPredicateMatch(TypeError, "not subscriptable"):
self.evaluate(func(input_val))
@test_util.run_deprecated_v1
def testInvalidIndex(self):
input_val = [1, 2]
with self.cached_session() as sess:
# Test with constant input; shape inference fails.
with self.assertRaisesWithPredicateMatch(ValueError, "out of range"):
constant_op.constant(input_val)[1:, 1:].get_shape()
# Test with constant input; shape inference fails.
with self.assertRaisesWithPredicateMatch(
(ValueError, errors_impl.InvalidArgumentError), "out of range"):
constant_op.constant(input_val)[1:, 1:].get_shape()
# Test evaluating with non-constant input; kernel execution fails.
input_t = array_ops.placeholder(dtypes.int32)
# Test evaluating with non-constant input; kernel execution fails.
@def_function.function
def func(input_t):
slice_t = input_t[1:, 1:]
with self.assertRaisesWithPredicateMatch(errors_impl.InvalidArgumentError,
"out of range"):
sess.run([slice_t], feed_dict={input_t: input_val})
return slice_t
with self.assertRaisesWithPredicateMatch(
TypeError, "must be integers or slices, not tuple"):
self.evaluate(func(input_val))
def _testSliceMatrixDim0(self, x, begin, size):
with self.cached_session(use_gpu=True):
tf_ans = array_ops.slice(x, [begin, 0], [size, x.shape[1]]).eval()
tf_ans = self.evaluate(array_ops.slice(x, [begin, 0], [size, x.shape[1]]))
np_ans = x[begin:begin + size, :]
self.assertAllEqual(tf_ans, np_ans)
@test_util.run_deprecated_v1
def testSliceMatrixDim0(self):
x = np.random.rand(8, 4).astype("f")
self._testSliceMatrixDim0(x, 1, 2)
@ -252,47 +256,46 @@ class SliceTest(test.TestCase):
self.assertEqual(slice_val.shape, slice_t.get_shape())
self.assertEqual(slice2_val.shape, slice2_t.get_shape())
@test_util.run_deprecated_v1
def testComplex(self):
with self.session(use_gpu=True):
inp = np.random.rand(4, 10, 10, 4).astype("f")
a = constant_op.constant(inp, dtype=dtypes.float32)
inp = np.random.rand(4, 10, 10, 4).astype("f")
a = constant_op.constant(inp, dtype=dtypes.float32)
x = np.random.randint(0, 9)
z = np.random.randint(0, 9)
if z > 0:
y = np.random.randint(0, z)
else:
y = 0
slice_t = a[:, x, y:z, :]
self.assertAllEqual(slice_t, inp[:, x, y:z, :])
x = np.random.randint(0, 9)
z = np.random.randint(0, 9)
if z > 0:
y = np.random.randint(0, z)
else:
y = 0
slice_t = a[:, x, y:z, :]
self.assertAllEqual(slice_t, inp[:, x, y:z, :])
def testRandom(self):
# Random dims of rank 6
input_shape = np.random.randint(0, 20, size=6)
inp = np.random.rand(*input_shape).astype("f")
with self.session(use_gpu=True) as sess:
a = constant_op.constant(
[float(x) for x in inp.ravel(order="C")],
shape=input_shape,
dtype=dtypes.float32)
indices = [0 if x == 0 else np.random.randint(x) for x in input_shape]
sizes = [
np.random.randint(0, input_shape[i] - indices[i] + 1)
for i in range(6)
]
slice_t = array_ops.slice(a, indices, sizes)
slice2_t = a[indices[0]:indices[0] + sizes[0], indices[1]:indices[
1] + sizes[1], indices[2]:indices[2] + sizes[2], indices[3]:indices[3]
+ sizes[3], indices[4]:indices[4] + sizes[4], indices[5]:
indices[5] + sizes[5]]
a = constant_op.constant([float(x) for x in inp.ravel(order="C")],
shape=input_shape,
dtype=dtypes.float32)
indices = [0 if x == 0 else np.random.randint(x) for x in input_shape]
sizes = [
np.random.randint(0, input_shape[i] - indices[i] + 1) for i in range(6)
]
slice_t = array_ops.slice(a, indices, sizes)
slice2_t = a[indices[0]:indices[0] + sizes[0],
indices[1]:indices[1] + sizes[1],
indices[2]:indices[2] + sizes[2],
indices[3]:indices[3] + sizes[3],
indices[4]:indices[4] + sizes[4],
indices[5]:indices[5] + sizes[5]]
slice_val, slice2_val = self.evaluate([slice_t, slice2_t])
slice_val, slice2_val = self.evaluate([slice_t, slice2_t])
expected_val = inp[indices[0]:indices[0] + sizes[0], indices[1]:indices[
1] + sizes[1], indices[2]:indices[2] + sizes[2], indices[3]:indices[
3] + sizes[3], indices[4]:indices[4] + sizes[4], indices[5]:indices[
5] + sizes[5]]
expected_val = inp[indices[0]:indices[0] + sizes[0],
indices[1]:indices[1] + sizes[1],
indices[2]:indices[2] + sizes[2],
indices[3]:indices[3] + sizes[3],
indices[4]:indices[4] + sizes[4],
indices[5]:indices[5] + sizes[5]]
self.assertAllEqual(slice_val, expected_val)
self.assertAllEqual(slice2_val, expected_val)
self.assertEqual(expected_val.shape, slice_t.get_shape())
@ -308,7 +311,6 @@ class SliceTest(test.TestCase):
m2 = array_ops.slice(z, [0, 0, 0], [constant_op.constant(1) + 0, 2, -1])
self.assertAllEqual(m2.get_shape().as_list(), [1, 2, 3])
def _testGradientSlice(self, input_shape, slice_begin, slice_size):
with self.cached_session(use_gpu=True):
num_inputs = np.prod(input_shape)
@ -334,18 +336,51 @@ class SliceTest(test.TestCase):
self.assertAllClose(np_ans, result)
def _testGradientSliceTape(self, input_shape, slice_begin, slice_size):
with backprop.GradientTape() as tape:
num_inputs = np.prod(input_shape)
num_grads = np.prod(slice_size)
inp = np.random.rand(num_inputs).astype("f").reshape(input_shape)
a = constant_op.constant([float(x) for x in inp.ravel(order="C")],
shape=input_shape,
dtype=dtypes.float32)
tape.watch(a)
slice_t = array_ops.slice(a, slice_begin, slice_size)
grads = np.random.rand(num_grads).astype("f").reshape(slice_size)
grad_tensor = constant_op.constant(grads)
grad = tape.gradient(slice_t, [a], grad_tensor)[0]
result = self.evaluate(grad)
# Create a zero tensor of the input shape ane place
# the grads into the right location to compare against TensorFlow.
np_ans = np.zeros(input_shape)
slices = []
for i in xrange(len(input_shape)):
slices.append(slice(slice_begin[i], slice_begin[i] + slice_size[i]))
np_ans[slices] = grads
self.assertAllClose(np_ans, result)
def _testGradientVariableSize(self):
with self.cached_session(use_gpu=True):
inp = constant_op.constant([1.0, 2.0, 3.0], name="in")
out = array_ops.slice(inp, [1], [-1])
grad_actual = gradients_impl.gradients(out, inp)[0].eval()
grad_actual = self.evaluate(gradients_impl.gradients(out, inp)[0])
self.assertAllClose([0., 1., 1.], grad_actual)
def _testGradientVariableSizeTape(self):
with backprop.GradientTape() as tape:
inp = constant_op.constant([1.0, 2.0, 3.0], name="in")
tape.watch(inp)
out = array_ops.slice(inp, [1], [-1])
grad_actual = self.evaluate(tape.gradient(out, inp))
self.assertAllClose([0., 1., 1.], grad_actual)
def _testGradientVariableSize2D(self):
# Regression test for bug in slice. A low-level bug in Eigen was causing
# incorrect results for negative indices in multi-dimensional tensors.
# See b/114318298.
with self.cached_session(use_gpu=True) as sess:
with self.cached_session(use_gpu=True):
x = constant_op.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 7]])
loss1 = math_ops.reduce_sum(x[:-1, :-1] * 1.0)
loss2 = math_ops.reduce_sum(x[:-1][:, :-1])
@ -356,39 +391,73 @@ class SliceTest(test.TestCase):
g1_val, g2_val = self.evaluate([g1, g2])
self.assertAllEqual(g1_val, g2_val)
@test_util.run_deprecated_v1
def _testGradientVariableSize2DTape(self):
# Regression test for bug in slice. A low-level bug in Eigen was causing
# incorrect results for negative indices in multi-dimensional tensors.
# See b/114318298.
with backprop.GradientTape(persistent=True) as tape:
x = constant_op.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 7]])
tape.watch(x)
loss1 = math_ops.reduce_sum(x[:-1, :-1] * 1.0)
loss2 = math_ops.reduce_sum(x[:-1][:, :-1])
g1 = tape.gradient(loss1, x)
g2 = tape.gradient(loss2, x)
g1_val, g2_val = self.evaluate([g1, g2])
self.assertAllEqual(g1_val, g2_val)
def testGradientsAll(self):
with ops.Graph().as_default():
# Slice the middle square out of a 4x4 input
self._testGradientSlice([4, 4], [1, 1], [2, 2])
# Slice the upper left square out of a 4x4 input
self._testGradientSlice([4, 4], [0, 0], [2, 2])
# Slice a non-square input starting from (2,1)
self._testGradientSlice([4, 4], [2, 1], [1, 2])
# Slice a 3D tensor
self._testGradientSlice([3, 3, 3], [0, 1, 0], [2, 1, 1])
# Use -1 as a slice dimension.
self._testGradientVariableSize()
# Use -1 as a slice dimension on a 2D tensor.
self._testGradientVariableSize2D()
def testGradientsAllTape(self):
# Slice the middle square out of a 4x4 input
self._testGradientSlice([4, 4], [1, 1], [2, 2])
self._testGradientSliceTape([4, 4], [1, 1], [2, 2])
# Slice the upper left square out of a 4x4 input
self._testGradientSlice([4, 4], [0, 0], [2, 2])
self._testGradientSliceTape([4, 4], [0, 0], [2, 2])
# Slice a non-square input starting from (2,1)
self._testGradientSlice([4, 4], [2, 1], [1, 2])
self._testGradientSliceTape([4, 4], [2, 1], [1, 2])
# Slice a 3D tensor
self._testGradientSlice([3, 3, 3], [0, 1, 0], [2, 1, 1])
self._testGradientSliceTape([3, 3, 3], [0, 1, 0], [2, 1, 1])
# Use -1 as a slice dimension.
self._testGradientVariableSize()
self._testGradientVariableSizeTape()
# Use -1 as a slice dimension on a 2D tensor.
self._testGradientVariableSize2D()
self._testGradientVariableSize2DTape()
@test_util.run_deprecated_v1
def testNotIterable(self):
# NOTE(mrry): If we register __getitem__ as an overloaded
# operator, Python will valiantly attempt to iterate over the
# Tensor from 0 to infinity. This test ensures that this
# unintended behavior is prevented.
c = constant_op.constant(5.0)
with self.assertRaisesRegex(errors_impl.OperatorNotAllowedInGraphError,
"iterating over `tf.Tensor`"):
for _ in c:
pass
# Tensor iteration is disabled explicitly for only graph mode.
with ops.Graph().as_default():
# NOTE(mrry): If we register __getitem__ as an overloaded
# operator, Python will valiantly attempt to iterate over the
# Tensor from 0 to infinity. This test ensures that this
# unintended behavior is prevented.
c = constant_op.constant(5.0)
with self.assertRaisesRegex(errors_impl.OperatorNotAllowedInGraphError,
"iterating over `tf.Tensor`"):
for _ in c:
pass
@test_util.run_deprecated_v1
def testComputedShape(self):
# NOTE(mrry): We cannot currently handle partially-known values,
# because `tf.slice()` uses -1 to specify a wildcard size, and
@ -400,9 +469,12 @@ class SliceTest(test.TestCase):
b = array_ops.slice(a, [begin, 0], [size, 2])
self.assertEqual([1, 2], b.get_shape())
begin = array_ops.placeholder(dtypes.int32, shape=())
c = array_ops.slice(a, [begin, 0], [-1, 2])
self.assertEqual([None, 2], c.get_shape().as_list())
# placeholders only make sense in a graph.
with ops.Graph().as_default():
a = constant_op.constant([[1, 2, 3], [4, 5, 6]])
begin = array_ops.placeholder(dtypes.int32, shape=())
c = array_ops.slice(a, [begin, 0], [-1, 2])
self.assertEqual([None, 2], c.get_shape().as_list())
def testSliceOfSlice(self):
with self.session(use_gpu=True):