diff --git a/tensorflow/lite/g3doc/microcontrollers/get_started.md b/tensorflow/lite/g3doc/microcontrollers/get_started.md index 008d5c65422..999438311d8 100644 --- a/tensorflow/lite/g3doc/microcontrollers/get_started.md +++ b/tensorflow/lite/g3doc/microcontrollers/get_started.md @@ -301,7 +301,7 @@ successfully run. TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, invoke_status); ``` -### 12. Obtain the output +### 13. Obtain the output The model's output tensor can be obtained by calling `output(0)` on the `tflite::MicroInterpreter`, where `0` represents the first (and only) output @@ -328,7 +328,7 @@ float value = output->data.f[0]; TF_LITE_MICRO_EXPECT_NEAR(0., value, 0.05); ``` -### 13. Run inference again +### 14. Run inference again The remainder of the code runs inference several more times. In each instance, we assign a value to the input tensor, invoke the interpreter, and read the @@ -351,7 +351,7 @@ value = output->data.f[0]; TF_LITE_MICRO_EXPECT_NEAR(-0.959, value, 0.05); ``` -### 14. Read the application code +### 15. Read the application code Once you have walked through this unit test, you should be able to understand the example's application code, located in