Adding nav entries for Layers tutorial, and making a few small formatting fixes to it.
Change: 144588235
This commit is contained in:
parent
a704573e37
commit
6987e97e11
@ -14,31 +14,27 @@ gentle introduction to multiclass classification.
|
|||||||
|
|
||||||
[View Tutorial](../tutorials/mnist/beginners/index.md)
|
[View Tutorial](../tutorials/mnist/beginners/index.md)
|
||||||
|
|
||||||
|
|
||||||
### Deep MNIST for Experts
|
### Deep MNIST for Experts
|
||||||
|
|
||||||
If you're already familiar with other deep learning software packages, and are
|
If you're already familiar with other deep learning software packages, and are
|
||||||
already familiar with MNIST, this tutorial will give you a very brief primer
|
already familiar with MNIST, this tutorial will give you a very brief primer on
|
||||||
on TensorFlow.
|
TensorFlow.
|
||||||
|
|
||||||
[View Tutorial](../tutorials/mnist/pros/index.md)
|
[View Tutorial](../tutorials/mnist/pros/index.md)
|
||||||
|
|
||||||
### TensorFlow Mechanics 101
|
### TensorFlow Mechanics 101
|
||||||
|
|
||||||
This is a technical tutorial, where we walk you through the details of using
|
This is a technical tutorial, where we walk you through the details of using
|
||||||
TensorFlow infrastructure to train models at scale. We use MNIST as the
|
TensorFlow infrastructure to train models at scale. We use MNIST as the example.
|
||||||
example.
|
|
||||||
|
|
||||||
[View Tutorial](../tutorials/mnist/tf/index.md)
|
[View Tutorial](../tutorials/mnist/tf/index.md)
|
||||||
|
|
||||||
|
|
||||||
## Easy ML with tf.contrib.learn
|
## Easy ML with tf.contrib.learn
|
||||||
|
|
||||||
### tf.contrib.learn Quickstart
|
### tf.contrib.learn Quickstart
|
||||||
|
|
||||||
A quick introduction to tf.contrib.learn, a high-level API for TensorFlow.
|
A quick introduction to tf.contrib.learn, a high-level API for TensorFlow.
|
||||||
Build, train, and evaluate a neural network with just a few lines of
|
Build, train, and evaluate a neural network with just a few lines of code.
|
||||||
code.
|
|
||||||
|
|
||||||
[View Tutorial](../tutorials/tflearn/index.md)
|
[View Tutorial](../tutorials/tflearn/index.md)
|
||||||
|
|
||||||
@ -73,19 +69,27 @@ Monitor API to audit the in-progress training of a neural network.
|
|||||||
### Building Input Functions with tf.contrib.learn
|
### Building Input Functions with tf.contrib.learn
|
||||||
|
|
||||||
This tutorial introduces you to creating input functions in tf.contrib.learn,
|
This tutorial introduces you to creating input functions in tf.contrib.learn,
|
||||||
and walks you through implementing an `input_fn` to train a neural network
|
and walks you through implementing an `input_fn` to train a neural network for
|
||||||
for predicting median house values.
|
predicting median house values.
|
||||||
|
|
||||||
[View Tutorial](../tutorials/input_fn/index.md)
|
[View Tutorial](../tutorials/input_fn/index.md)
|
||||||
|
|
||||||
### Creating Estimators in tf.contrib.learn
|
### Creating Estimators in tf.contrib.learn
|
||||||
|
|
||||||
This tutorial covers how to create your own `Estimator` using the building blocks
|
This tutorial covers how to create your own `Estimator` using the building
|
||||||
provided in tf.contrib.learn. You'll build a model to predict the ages of abalones
|
blocks provided in tf.contrib.learn. You'll build a model to predict the ages of
|
||||||
based on their physical measurements.
|
abalones based on their physical measurements.
|
||||||
|
|
||||||
[View Tutorial](../tutorials/estimators/index.md)
|
[View Tutorial](../tutorials/estimators/index.md)
|
||||||
|
|
||||||
|
### A Guide to TF Layers: Building a Convolutional Neural Network
|
||||||
|
|
||||||
|
This tutorial introduces you to building neural networks in TensorFlow using the
|
||||||
|
`tf.layers` module. You'll build a convolutional neural network `Estimator` to
|
||||||
|
recognize the handwritten digits in the MNIST data set.
|
||||||
|
|
||||||
|
[View Tutorial](../tutorials/layers/index.md)
|
||||||
|
|
||||||
## TensorFlow Serving
|
## TensorFlow Serving
|
||||||
|
|
||||||
### TensorFlow Serving
|
### TensorFlow Serving
|
||||||
@ -95,7 +99,6 @@ serving machine learning models, designed for production environments.
|
|||||||
|
|
||||||
[View Tutorial](../tutorials/tfserve/index.md)
|
[View Tutorial](../tutorials/tfserve/index.md)
|
||||||
|
|
||||||
|
|
||||||
## Image Processing
|
## Image Processing
|
||||||
|
|
||||||
### Convolutional Neural Networks
|
### Convolutional Neural Networks
|
||||||
@ -109,8 +112,8 @@ representations of visual content.
|
|||||||
|
|
||||||
### Image Recognition
|
### Image Recognition
|
||||||
|
|
||||||
How to run object recognition using a convolutional neural network
|
How to run object recognition using a convolutional neural network trained on
|
||||||
trained on ImageNet Challenge data and label set.
|
ImageNet Challenge data and label set.
|
||||||
|
|
||||||
[View Tutorial](../tutorials/image_recognition/index.md)
|
[View Tutorial](../tutorials/image_recognition/index.md)
|
||||||
|
|
||||||
@ -120,8 +123,8 @@ Building on the Inception recognition model, we will release a TensorFlow
|
|||||||
version of the [Deep Dream](https://github.com/google/deepdream) neural network
|
version of the [Deep Dream](https://github.com/google/deepdream) neural network
|
||||||
visual hallucination software.
|
visual hallucination software.
|
||||||
|
|
||||||
[View Tutorial](https://nbviewer.jupyter.org/github/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/deepdream/deepdream.ipynb)
|
[View
|
||||||
|
Tutorial](https://nbviewer.jupyter.org/github/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/deepdream/deepdream.ipynb)
|
||||||
|
|
||||||
## Language and Sequence Processing
|
## Language and Sequence Processing
|
||||||
|
|
||||||
@ -157,7 +160,6 @@ TensorFlow.
|
|||||||
|
|
||||||
[View Tutorial](../tutorials/syntaxnet/index.md)
|
[View Tutorial](../tutorials/syntaxnet/index.md)
|
||||||
|
|
||||||
|
|
||||||
## Non-ML Applications
|
## Non-ML Applications
|
||||||
|
|
||||||
### Mandelbrot Set
|
### Mandelbrot Set
|
||||||
@ -169,7 +171,7 @@ learning. Here's a naive implementation of Mandelbrot set visualization.
|
|||||||
|
|
||||||
### Partial Differential Equations
|
### Partial Differential Equations
|
||||||
|
|
||||||
As another example of non-machine learning computation, we offer an example of
|
As another example of non-machine learning computation, we offer an example of a
|
||||||
a naive PDE simulation of raindrops landing on a pond.
|
naive PDE simulation of raindrops landing on a pond.
|
||||||
|
|
||||||
[View Tutorial](../tutorials/pdes/index.md)
|
[View Tutorial](../tutorials/pdes/index.md)
|
||||||
|
@ -45,7 +45,7 @@ evaluate the convolutional neural network. The complete, final code can be
|
|||||||
here](https://www.tensorflow.org/code/tensorflow/examples/tutorials/layers/cnn_mnist.py).
|
here](https://www.tensorflow.org/code/tensorflow/examples/tutorials/layers/cnn_mnist.py).
|
||||||
|
|
||||||
<p class="note"><b>NOTE:</b> Before proceeding, make sure you've
|
<p class="note"><b>NOTE:</b> Before proceeding, make sure you've
|
||||||
<a href="https://www.tensorflow.org/get_started/os_setup">installed the latest
|
<a href="../../get_started/os_setup.md">installed the latest
|
||||||
version of TensorFlow</a> on your machine.</p>
|
version of TensorFlow</a> on your machine.</p>
|
||||||
|
|
||||||
## Intro to Convolutional Neural Networks
|
## Intro to Convolutional Neural Networks
|
||||||
@ -87,9 +87,9 @@ is equal to 1). We can interpret the softmax values for a given image as
|
|||||||
relative measurements of how likely it is that the image falls into each target
|
relative measurements of how likely it is that the image falls into each target
|
||||||
class.
|
class.
|
||||||
|
|
||||||
NOTE: For a more comprehensive walkthrough of CNN architecture, see Stanford
|
<p class="note"><b>NOTE:</b> For a more comprehensive walkthrough of CNN
|
||||||
University's [Convolutional Neural Networks for Visual Recognition course
|
architecture, see Stanford University's <a href="http://cs231n.github.io/convolutional-networks/">
|
||||||
materials](http://cs231n.github.io/convolutional-networks/).
|
Convolutional Neural Networks for Visual Recognition course materials</a>.</p>
|
||||||
|
|
||||||
## Building the CNN MNIST Classifier {#building-cnn-classifier}
|
## Building the CNN MNIST Classifier {#building-cnn-classifier}
|
||||||
|
|
||||||
@ -506,7 +506,7 @@ if mode == learn.ModeKeys.TRAIN:
|
|||||||
<p class="note"><b>NOTE:</b> For a more in-depth look at configuring training ops for Estimator model
|
<p class="note"><b>NOTE:</b> For a more in-depth look at configuring training ops for Estimator model
|
||||||
functions, see <a href="../estimators/index.md#defining_the_training_op_for_the_model">"Defining the training op for the
|
functions, see <a href="../estimators/index.md#defining_the_training_op_for_the_model">"Defining the training op for the
|
||||||
model"</a> in the
|
model"</a> in the
|
||||||
<a href="../estimators/index.md">"Creating Estimations in tf.contrib.learn"]</a> tutorial.</p>
|
<a href="../estimators/index.md">"Creating Estimations in tf.contrib.learn"</a> tutorial.</p>
|
||||||
|
|
||||||
### Generate Predictions {#generate-predictions}
|
### Generate Predictions {#generate-predictions}
|
||||||
|
|
||||||
@ -541,7 +541,7 @@ using [`tf.nn.softmax()`](../../api_docs/python/nn.md#softmax):
|
|||||||
tf.nn.softmax(logits, name="softmax_tensor")
|
tf.nn.softmax(logits, name="softmax_tensor")
|
||||||
```
|
```
|
||||||
|
|
||||||
<p class="note"><b>NOTE:</b We use the `name` argument to explicitly name this operation `softmax_tensor`, so we can reference it later. (We'll set up logging for the softmax values in <a href="#set-up-a-logging-hook">Set Up a Logging Hook</a>.)</p>
|
<p class="note"><b>NOTE:</b> We use the `name` argument to explicitly name this operation `softmax_tensor`, so we can reference it later. (We'll set up logging for the softmax values in <a href="#set-up-a-logging-hook">Set Up a Logging Hook</a>.)</p>
|
||||||
|
|
||||||
We compile our predictions in a dict as follows:
|
We compile our predictions in a dict as follows:
|
||||||
|
|
||||||
|
@ -10,6 +10,7 @@ wide_and_deep/index.md
|
|||||||
monitors/index.md
|
monitors/index.md
|
||||||
input_fn/index.md
|
input_fn/index.md
|
||||||
estimators/index.md
|
estimators/index.md
|
||||||
|
layers/index.md
|
||||||
### TensorFlow Serving
|
### TensorFlow Serving
|
||||||
tfserve/index.md
|
tfserve/index.md
|
||||||
### Image Processing
|
### Image Processing
|
||||||
|
Loading…
Reference in New Issue
Block a user