diff --git a/tensorflow/lite/kernels/internal/reference/reference_ops.h b/tensorflow/lite/kernels/internal/reference/reference_ops.h index 94a4c3554e1..8488f7ae266 100644 --- a/tensorflow/lite/kernels/internal/reference/reference_ops.h +++ b/tensorflow/lite/kernels/internal/reference/reference_ops.h @@ -1578,7 +1578,7 @@ inline void ConcatenationWithScaling(const ConcatenationParams& params, const float bias = -input_zeropoint[i] * scale; for (int j = 0; j < copy_size; ++j) { const int32_t value = - static_cast(round(input_ptr[j] * scale + bias)) + + static_cast(std::round(input_ptr[j] * scale + bias)) + output_zeropoint; output_ptr[j] = static_cast(std::max(std::min(255, value), 0)); @@ -1689,7 +1689,7 @@ void PackWithScaling(const PackParams& params, auto input_ptr = input_data[i]; for (int j = 0; j < copy_size; ++j) { const int32_t value = - static_cast(round(input_ptr[j] * scale + bias)) + + static_cast(std::round(input_ptr[j] * scale + bias)) + output_zeropoint; output_ptr[j] = static_cast(std::max(std::min(255, value), 0)); @@ -3151,7 +3151,7 @@ inline void Exp(const T* input_data, const size_t num_elements, T* output_data) { gemmlowp::ScopedProfilingLabel label("Exp"); for (size_t idx = 0; idx < num_elements; ++idx) { - output_data[idx] = exp(input_data[idx]); + output_data[idx] = std::exp(input_data[idx]); } } @@ -3422,10 +3422,10 @@ inline void Mean(const tflite::MeanParams& op_params, temp_value = temp_value / num_elements_in_axis; if (ordinary_mean) { output_data[Offset(output_shape, out_b, 0, 0, out_d)] = - static_cast(round(temp_value)); + static_cast(std::round(temp_value)); } else { output_data[Offset(output_shape, out_b, 0, 0, out_d)] = - static_cast(round(temp_value * scale + bias)) + + static_cast(std::round(temp_value * scale + bias)) + output_zero_point; } } @@ -3492,8 +3492,9 @@ inline bool QuantizedMeanOrSum(const T* input_data, int32 input_zero_point, // TODO(b/116341117): Eliminate float and do this completely in 8bit. const float bias = -input_zero_point * scale * num_elements_in_axis + 0.5; for (size_t idx = 0; idx < num_outputs; ++idx) { - const U value = static_cast(round(temp_sum[idx] * scale + bias)) + - output_zero_point; + const U value = + static_cast(std::round(temp_sum[idx] * scale + bias)) + + output_zero_point; output_data[idx] = static_cast(value); } } else { @@ -3503,8 +3504,9 @@ inline bool QuantizedMeanOrSum(const T* input_data, int32 input_zero_point, static_cast(num_elements_in_axis); // Convert to float value. - output_data[idx] = static_cast(round(float_mean * scale + bias)) + - output_zero_point; + output_data[idx] = + static_cast(std::round(float_mean * scale + bias)) + + output_zero_point; } } }